On mixed integer nonlinear optimization to interpret and visualize complex datasets

17.06.2019 16:45 - 17:45

Extracting knowledge from data, such as dependencies, global underlying patterns or unusual behaviors, has become a crucial task for analysts to improve decision making. Nevertheless, the increase in data complexity has made, in some cases, the classic statistical models obsolete, and more sophisticated frameworks are thus needed. In this context, Mathematical Optimization plays an important role, both developing new models and algorithmic approaches as well as creating new frameworks, which gain insight into specific datasets' features and cope with nowadays requirements. In this talk, we discuss how mixed integer nonlinear programming helps to interpret and visualize data involving time-varying frequencies and proximities.

Personal website of Vanesa Guerrero Lozano

HS 7 OMP1 (#1.303)