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A regression tree is a piecewise constant model
obtained from recursive partitioning of the
covariate space
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How to grow regression trees?

e Empirical risk minimization (ERM) is NP-hard

e Greedy algorithms
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Breiman’s CART algorithm
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Breiman’s CART algorithm
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Breiman’s CART algorithm

g A(S,C,Dn) ::(Z(yz‘—ﬂc)2— Z (yi_gCR))
x;€C z;,€CR
— Z yCL )/N(C)
\ z,€CL, /
A(s,C,Dy) := Var{f*(X) | X € C} — ]I;;{};EECCR}}VM{]"*(X) | X € Cr}
P{X S CL}
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Var{ f*(X) | X € C}

from making the split s



Random forests (RFs) are ensembles of randomized
CART treeS [Breiman, 2001]

e Each treeis grown on a
X2> a bootstrap resample of D,
N
X >b @
e At each node, the features
Q/\ P are subsampled before
choosing the best split



Random forests (RFs) are ensembles of randomized
CART treeS [Breiman, 2001]
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The big question...
Is there a statistical-computational trade-off?

So _- Test error

ERM
Next step: Identify the right statistical framework



High-dimensional analysis of CART / RFs
e Giveni.i.d. data D, = {(X;, ;) }iL,
o Vi=f"X)+e, Xi~v
e Assume f*(x) = fy (x5) for some feature index set S of size s
e Notation: % ( f, 5 d, n) —Ep, 6x {( F(X;Dn,0) — f* (X))2}

e Definition: We say that an estimator f is high-dimensional consistent if

. logn . .
lim —2" _—0 and lim i)f{(f,fa‘,d,n) =0
d,n—o0 d d,n—o00
e Known results: Sparsity + —, High-dimensional

consistency

[Klusowski ’20], [Syrganis & Zampetakis '20], [Chi et al. ’22], [Mazumder & Wang '24], [Klusowski & Tian '24]



High-dimensional consistency and feature selection

e Definition: We say that an estimator f is high-dimensional consistent if
lim %™ _( and lim m(f,fg,d,n) _0
,N—>00

d,n—o00 d

e Average depth of a tree is at most logn




High-dimensional consistency and feature selection

e Definition: We say that an estimator f is high-dimensional consistent if
,N—>00

d,n—o00 d

e Average depth of a tree is at most logn = Cannot split on all features

e Hence, feature selection is necessary for high-dimensional consistency

e Theoretical results: CART can perform feature selection given

o
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Why do tree-based models still outperform deep
learning on tabular data?
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Finding 2: Uninformative features affect more MLP-like neural networks
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b. Adding features
Tabular datasets contain many uninformative features
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Are assumptions necessary?

e Assume binary covariates {—1,1}¢ with uniform distribution

e Consider the XOR function f*(x) = x; X, [Syrgkanis & Zampetakis *20], [Mazumder & Wang '24]

> 50/50 class split
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Are assumptions necessary?

e Assume binary covariates {—1,1}¢ with uniform distribution

e Consider the XOR function f*(x) = x;x, [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]

A1, {£1}¢,D,) =0

k, {1}, D,)=0,k=1,2,...,d

'A(k,jcjpn):()’k:l,Q,.“’d .......

Unless C has already split on X; or X,

.
-----------------------------------------------------------------------------------------------

/E/'\

Marginal signal bottleneck



Are assumptions necessary?

e Assume binary covariates {—1,1}¢ with uniform distribution

e Consider the XOR function f*(x) = x;x, [Syrgkanis & Zampetakis '20], [Mazumder & Wang *24]
e CART makes “completely random” splits

e Not high-dimensional consistent

e Until now, no formal proof 1 Address these

e No generalization beyond this example issues + more



Generalizing the XOR function

e Why is XOR hard?

o “Pure interaction”, contains no marginal information

o  On the other hand, CART uses only marginal information to determine splits
e Other pure interactions: Boolean monomials

o Forany S C {1,2,...,d},xs(x) = HCE@
i€S
e Proposition (Fourier basis for Boolean cube):
o Anyfunction f:{+1}¢ — R has a unique decomposition f(x) = Z asxs

o ANOVA decomposition with contrast y2 and effect size ag

o Impose heredity constraint on the pattern of interactions



Generalizing the XOR function [abbe etal., ‘215; [Abbe et al., ‘22]

Definition: We say that a function f(x) = Y sc[q1@sxs(x) has the
Staircase Propertyif S; C Sy C--- C Sk, |Si|=1, |S;\S;-1]=1

e Examples: 1+ x1x9o L122 X

T1 + T1T273

Definition: We say that a function f(x) = Y sc[q1@sxs(x) has the
Merged Staircase Property (MSP) if |S;\ Ug;ll Si| <1, j=1,2,...,k

e Examples: 1 + X122 L1292
X
1+ T2+ T1T2x3 X1+ 12273



Main results

Definition: We say that a function f(x) = Y sc[q1@sxs(x) has the

Merged Staircase Property (MSP) if |S;\ Ug:_ll S| <1, j=1,2,...,

k

» (Necessity) If f* does not satisfy MSP, then R(fourr, fo, d, ) = Q(1)
whenever n = exp(0(d)).

\_

/Theorem (informal): Suppose f; depends only on s covariates. Then\
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Main results

Definition: We say that a function f(x) = Y sc[q1@sxs(x) has the

Merged Staircase Property (MSP) if |S;\ Ug:_ll S| <1, j=1,2,...,

k

» (Necessity) If f* does not satisfy MSP, then R(fourr, fo, d, ) = Q(1)
whenever n = exp(0(d)).

» (Near sufficiency) If f* satisfies MSP and Fourier coefficients are
generic, then R(feurr, f5, d,n) = 0(25logd /n).

Furthermore, regardless of whether f* satisfies MSP, R(fzry, fo, d, 1)

( 0(2°logd /n).

/Theorem (informal): Suppose f; depends only on s covariates. Thenx

/




Main results: Sample complexities

MSP Non-MSP
CART 0(25logd)
ERM 0(2° log d)
Non-adaptive exp(Q(d))

e Establish a statistical-computational trade-off
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e Establish a statistical-computational trade-off

e Characterize the regression functions for which CART is high-dimensional consistent



Main results: Sample complexities

MSP Non-MSP
CART 0(25logd) exp(Q(d))
ERM 0(2° logd) 0(25 logd)
Non-adaptive exp(Q(d)) exp(Q(d))

e Establish a statistical-computational trade-off

e Characterize the regression functions for which CART is high-dimensional consistent
« Lower bounds hold more broadly for RFs and other greedy trees and ensembles

 Lower bounds hold when there is no noise

 Lower bounds have robust versions that hold for MSP functions



Head-to-head comparison with neural networks

e Recent work in neural network theory: What types of functions are learnable

by 2-layer neural networks optimized using SGD? [Abbe et al. *21], [Abbe et al., *22],

[Barak et al., ’22], [Abbe et al., 23], [Suzuki et al., 23], [Glasgow, 24], [Kou et al., ’24], [Nichani et al., ’23]*, [Fu et
al., 24]%, ...

o [Abbe et al. ’22] studied binary features under the mean field regime

* Fully connected, large width, (small) constant step size,
online SGD for O(d) iterations [one sample per iteration]

* SGD dynamics can be approximated by nonlinear PDE
[Mei et al. ‘18]



Head-to-head comparison with neural networks

e Recent work in neural network theory: What types of functions are learnable

by 2-layer neural networks optimized using SGD? [Abbe et al. *21], [Abbe et al., *22],
[Barak et al., ’22], [Abbe et al., 23], [Suzuki et al., 23], [Glasgow, 24], [Kou et al., ’24], [Nichani et al., ’23]*, [Fu et
al., 24]%, ...

o [Abbe et al. ’22] studied binary features under the mean field regime
o MSP characterizes learnability
o (Necessity) Learnable if f* satisfies* MSP and Fourier coefficients are generic

o (Near sufficiency) Not learnable if f* does not satisfy MSP



Head-to-head comparison wit]

h neural networks

MSP Non-MSP
CART 0(25logd) exp(Q(d))
ERM 0(25 log d) 0(25 log d)
Non-adaptive exp(Q(d)) exp(Q(d))
Two-layer NNs o(d) w(d)
[Abbe et al. ’22]




Why are lower bounds hard? E.g., XOR

e Naive strategy: Prove that CART never splits on X, or X,

o Need concentration for impurity decrease values

A

W.h.p. A(k,C,D,) — Ak, C, D,)

=0 (n_l/2>



Why are lower bounds hard? E.g., XOR

X

e Naive strategy: Prove that CART never splits on X, or X,

o Need concentration for impurity decrease values

W.hp. sup |A(k,C,Dy) — A(k,C, D)
C,k

=0 (n_1/2> X



Why are lower bounds hard? E.g., XOR

X
e Naive strategy: Prove that CART never splits on X, or X,
o Need concentration for impurity decrease values for all possible splits -
1
e New strategy: Prove that , CART never

splits on X or X,
o New interpretation of CART root-to-leaf path as a stochastic process

o Use coupling and symmetry
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Root-to-leaf path is a stochastic process

O c, )
o o
C
/\ 1 Use J(x; D,,) c [d] to
O O C denote the set of features
2 split upon along the path
PN



Reduction to bounding P{1,2 ¢ /(X;D,,)}

Ex,p, { (fx f*(X) 2} %

tower property

)

=Exp, { x{ (X))2 |X[d]\{1,2}}}
<{(70
X

> Ex p, { (X;Dp) — (X))2 | X[d]\{1,2}} 1{1,2 ¢ J(X; Dn)}}
> Ex,p, {Var{ }-1{1,2¢ J(X;Dn)}}

When 1,2 ¢ J(X; D,,), then
f (X; D,,) is constant with respect to X(; ,,

Ex {(f(X; D,) — f*(X))2 | X[d]\{l,z}} > Var{f"(X)}



Reduction to bounding P{1,2 ¢ /(X;D,,)}

Ex,p, { ( f*(X) 2} %

)
= Ex D {Ex { (X) | X[d]\{l,z}}}
> Ex p, { X { (X) | X[d]\{l,Q}} 1{1,2 ¢ J(X; Dn)}}
> Ex,p, {Var{f*(X)}-1{1,2 ¢ J(X;Dy)}}

= Var{f*(X )}']P’{L? ¢ J(X; n)}



Bounding P{1,2 ¢ /(X; D,,)} via coupling

e Want to say that the root-to-leaf path splits
on a random subset of features

Co

a oo
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on a random subset of features C,

e Hard to prove directly, so construct a related c
path :
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Bounding P{1,2 ¢ /(X; D,,)} via coupling

(1)
e Want to say that the root-to-leaf path splits Co Co
on a random subset of features C, C,0
e Hard to prove directly, so construct a related C. ~ .0
path
. C C.@
e Prove the desired property for the related 3 3

path



Key Takeaways

Explored the limits of greedy optimization with CART & RFs
Some functions (e.g., XOR) are hard to learn

Lower bounds reveal fundamental statistical-computational
trade-offs

CART & RFs vs. NNs. When to use each method?

Tan, K., Balasubramanian, Statistical-Computational Trade-
offs for Recursive Adaptive Partitioning Estimators, Major
revision in AoS, 2024+



Thank you!

Questions?

jason.klusowski@princeton.edu



