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A regression tree is a piecewise constant model 
obtained from recursive partitioning of the 
covariate space
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How to grow regression trees?

● Empirical risk minimization (ERM) is NP-hard [Hyafil & Rivest, 1976]

● Greedy algorithms

○ Choose the “best” local update

○ CART [Breiman, Friedman, Olshen, Stone, 1984]

○ Many others: C4.5 [Quinlan, 1993], ID3 [Quinlan, 
1986], GUIDE [Loh, 2009],...

current 
iterate



Breiman’s CART algorithm
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Breiman’s CART algorithm
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Left 
child CL

Right 
child CR

Cell output !𝑦!



Breiman’s CART algorithm

Impurity 
decrease

Reduction in residual variance from making the split s



Random forests (RFs) are ensembles of randomized
CART trees [Breiman, 2001]

X1> b

X2> a
● Each tree is grown on a 

bootstrap resample of 𝒟!

● At each node, the features 
are subsampled before 
choosing the best split



Random forests (RFs) are ensembles of randomized
CART trees [Breiman, 2001]

X1> b

X2> a
…

X3> c

X2> d+ +

B trees

Θ"

Independent random seeds

Θ# …
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Next step: Identify the right statistical framework

The big question… 
Is there a statistical-computational trade-off?

ERM

CART



High-dimensional analysis of CART / RFs
● Given i.i.d. data 𝒟" = 𝑿# , 𝑌# #$%

"

● 𝑌# = 𝑓∗ 𝑿# + 𝜖# , 𝑋# ∼ 𝜈
● Assume 𝑓∗ 𝒙 = 𝑓'∗(𝒙() for some feature index set S of size s
● Notation:

● Definition: We say that an estimator 1𝑓 is high-dimensional consistent if

● Known results:

and

More 
assumptions Sparsity   + ⟹ High-dimensional 

consistency

[Klusowski ’20], [Syrganis & Zampetakis ’20], [Chi et al. ’22], [Mazumder & Wang ’24], [Klusowski & Tian ’24]



High-dimensional consistency and feature selection
● Definition: We say that an estimator 1𝑓 is high-dimensional consistent if

● Average depth of a tree is at most log 𝑛

and



High-dimensional consistency and feature selection
● Definition: We say that an estimator 1𝑓 is high-dimensional consistent if

● Average depth of a tree is at most log 𝑛 ⟹ Cannot split on all features
● Hence, feature selection is necessary for high-dimensional consistency
● Theoretical results: CART can perform feature selection given assumptions

and



Are assumptions necessary?
● Assume binary covariates −1,1 ) with uniform distribution
● Consider the XOR function 𝑓∗ 𝑥 = 𝑥%𝑥* [Syrgkanis & Zampetakis ’20], [Mazumder & Wang ’24]
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Are assumptions necessary?
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Marginal signal bottleneck

● Assume binary covariates −1,1 ) with uniform distribution
● Consider the XOR function 𝑓∗ 𝑥 = 𝑥%𝑥* [Syrgkanis & Zampetakis ’20], [Mazumder & Wang ’24]



Are assumptions necessary?
● Assume binary covariates −1,1 ) with uniform distribution
● Consider the XOR function 𝑓∗ 𝑥 = 𝑥%𝑥* [Syrgkanis & Zampetakis ’20], [Mazumder & Wang ’24]

● CART makes “completely random” splits
● Not high-dimensional consistent
● Until now, no formal proof
● No generalization beyond this example

Address these 
issues + more



Generalizing the XOR function
● Why is XOR hard?

○ “Pure interaction”, contains no marginal information

○ On the other hand, CART uses only marginal information to determine splits

● Other pure interactions: Boolean monomials
○ For any

● Proposition (Fourier basis for Boolean cube):
○ Any function                             has a unique decomposition

○ ANOVA decomposition with contrast 𝜒!" and effect size 𝛼!

○ Impose heredity constraint on the pattern of interactions



Generalizing the XOR function [Abbe et al., ‘21]; [Abbe et al., ‘22]
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● Examples:
✅ ❌
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Theorem (informal): Suppose 𝑓'∗ depends only on 𝑠 covariates. Then
• (Necessity) If 𝑓∗ does not satisfy MSP, then ℜ 1𝑓!,-. , 𝑓'∗, 𝑑, 𝑛 = Ω 1

whenever 𝑛 = exp(𝑂 𝑑 ).
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Main results
Definition: We say that a function 𝑓 𝑥 = ∑(⊂ ) 𝛼(𝜒((𝑥) has the 

Merged Staircase Property (MSP) if

Theorem (informal): Suppose 𝑓'∗ depends only on 𝑠 covariates. Then
• (Necessity) If 𝑓∗ does not satisfy MSP, then ℜ 1𝑓!,-. , 𝑓'∗, 𝑑, 𝑛 = Ω 1

whenever 𝑛 = exp(𝑂 𝑑 ).
• (Near sufficiency) If 𝑓∗ satisfies MSP and Fourier coefficients are 

generic, then ℜ 1𝑓!,-. , 𝑓'∗, 𝑑, 𝑛 = O 2/ log 𝑑 /𝑛 .
Furthermore, regardless of whether 𝑓∗ satisfies MSP, ℜ 1𝑓0-1 , 𝑓'∗, 𝑑, 𝑛
= O 2/ log 𝑑 /𝑛 .



Main results: Sample complexities
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Main results: Sample complexities
MSP Non-MSP

CART

Non-adaptive

ERM

exp(Ω 𝑑 )𝑂 2# log 𝑑

𝑂 2# log 𝑑

exp(Ω 𝑑 ) exp(Ω 𝑑 )

𝑂 2# log 𝑑

● Establish a statistical-computational trade-off

● Characterize the regression functions for which CART is high-dimensional consistent

• Lower bounds hold more broadly for RFs and other greedy trees and ensembles
• Lower bounds hold when there is no noise
• Lower bounds have robust versions that hold for MSP functions



Head-to-head comparison with neural networks
● Recent work in neural network theory: What types of functions are learnable 

by 2-layer neural networks optimized using SGD? [Abbe et al. ’21], [Abbe et al., ’22], 
[Barak et al., ’22], [Abbe et al., ’23], [Suzuki et al., ’23], [Glasgow, ’24], [Kou et al., ’24], [Nichani et al., ’23]*, [Fu et 
al., ’24]*, …

● [Abbe et al. ’22] studied binary features under the mean field regime

• Fully connected, large width, (small) constant step size, 
online SGD for O(d) iterations [one sample per iteration]

• SGD dynamics can be approximated by nonlinear PDE 
[Mei et al. ‘18]



Head-to-head comparison with neural networks
● Recent work in neural network theory: What types of functions are learnable 

by 2-layer neural networks optimized using SGD? [Abbe et al. ’21], [Abbe et al., ’22], 
[Barak et al., ’22], [Abbe et al., ’23], [Suzuki et al., ’23], [Glasgow, ’24], [Kou et al., ’24], [Nichani et al., ’23]*, [Fu et 
al., ’24]*, …

● [Abbe et al. ’22] studied binary features under the mean field regime
○ MSP characterizes learnability

○ (Necessity) Learnable if 𝑓∗ satisfies* MSP and Fourier coefficients are generic

○ (Near sufficiency) Not learnable if 𝑓∗ does not satisfy MSP



Head-to-head comparison with neural networks
MSP Non-MSP

CART

Non-adaptive

ERM

exp(Ω 𝑑 )𝑂 2# log 𝑑

𝑂 2# log 𝑑

exp(Ω 𝑑 ) exp(Ω 𝑑 )

𝑂 2# log 𝑑

Two-layer NNs 
[Abbe et al. ’22]

𝑂 𝑑 𝜔 𝑑



Why are lower bounds hard? E.g., XOR 
● Naive strategy: Prove that CART never splits on X1 or X2

○ Need concentration for impurity decrease values
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Why are lower bounds hard? E.g., XOR
● Naive strategy: Prove that CART never splits on X1 or X2

○ Need concentration for impurity decrease values for all possible splits

-1 1

1 -1

X2

X1
● New strategy: Prove that for a single root-to-leaf path, CART never 

splits on X1 or X2

○ New interpretation of CART root-to-leaf path as a stochastic process

○ Use coupling and symmetry
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Root-to-leaf path is a stochastic process

x

C0

C1

C2

C3

Use 𝐽 𝒙; 𝒟! ⊂ 𝑑 to 

denote the set of features 

split upon along the path



Reduction to bounding ℙ 1,2 ∉ 𝐽(𝑿;𝒟!)

tower property

When 1, 2 ∉ 𝐽 𝑿; 𝒟% , then
• 9𝑓 𝑿;𝒟% is constant with respect to 𝑿 &,"

• 𝔼( 9𝑓 𝑿;𝒟% − 𝑓∗ 𝑿
"
| 𝑿 ) \ &," ≥ Var 𝑓∗(𝑿)
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● Want to say that the root-to-leaf path splits 
on a random subset of features

● Hard to prove directly, so construct a related 
path

● Prove the desired property for the related 
path



Key Takeaways
● Explored the limits of greedy optimization with CART & RFs

● Some functions (e.g., XOR) are hard to learn

● Lower bounds reveal fundamental statistical-computational 
trade-offs

● CART & RFs vs. NNs. When to use each method?

● Tan, K., Balasubramanian, Statistical-Computational Trade-
offs for Recursive Adaptive Partitioning Estimators, Major 
revision in AoS, 2024+



Thank you!

Questions?

jason.klusowski@princeton.edu


