Statistical-Computational Trade-offs for Recursive Adaptive Partitioning Estimators

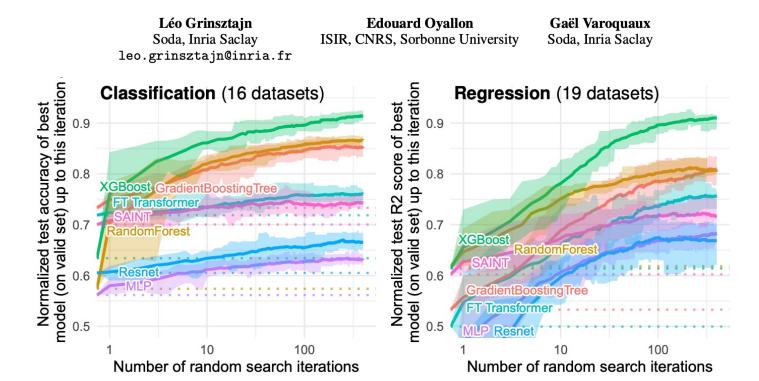
Jason M. Klusowski Operations Research and Financial Engineering (ORFE)

Statistical-Computational Trade-offs for Recursive Adaptive Partitioning Estimators

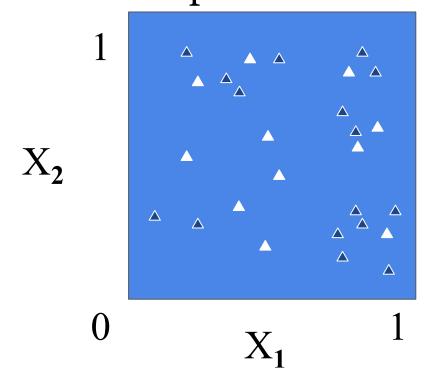
Yan Shuo Tan (NUS)

Krishnakumar Balasubramanian (UC Davis)

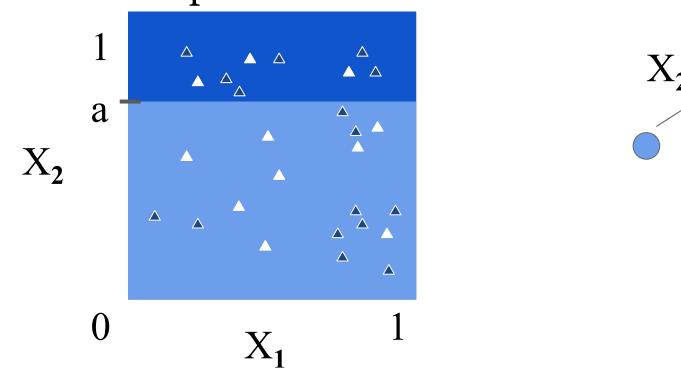
Why do tree-based models still outperform deep learning on tabular data?



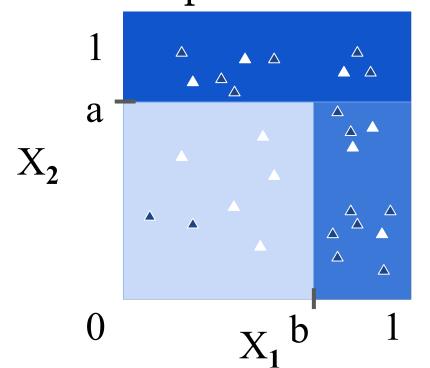
A regression tree is a **piecewise constant** model obtained from **recursive partitioning** of the covariate space

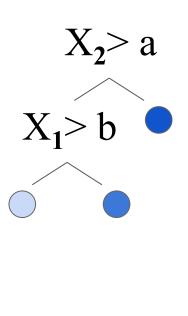


A regression tree is a **piecewise constant** model obtained from **recursive partitioning** of the covariate space

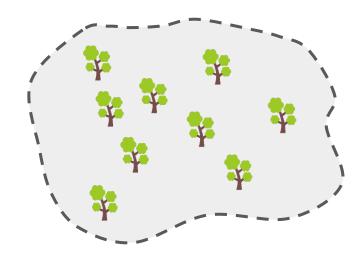


A regression tree is a **piecewise constant** model obtained from **recursive partitioning** of the covariate space

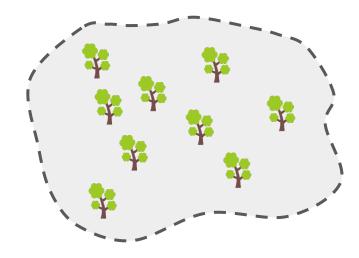




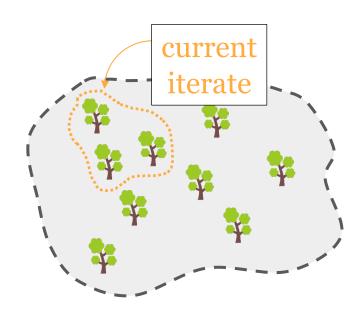
• Empirical risk minimization (ERM)



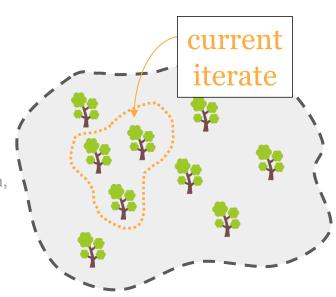
• Empirical risk minimization (ERM) is NP-hard [Hyafil & Rivest, 1976]

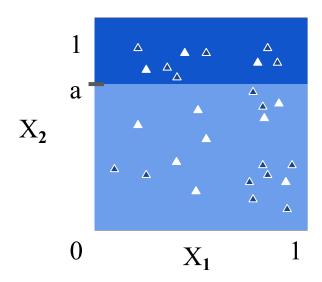


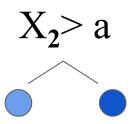
- Empirical risk minimization (ERM) is NP-hard [Hyafil & Rivest, 1976]
- Greedy algorithms
 - Choose the "best" local update

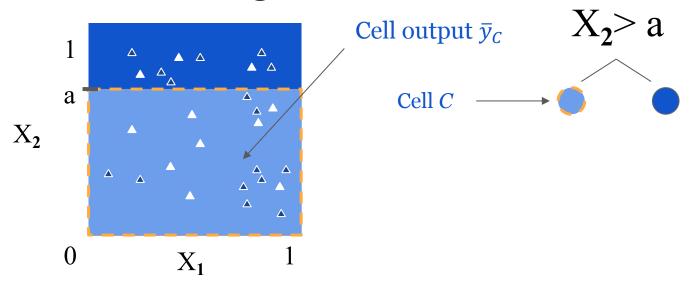


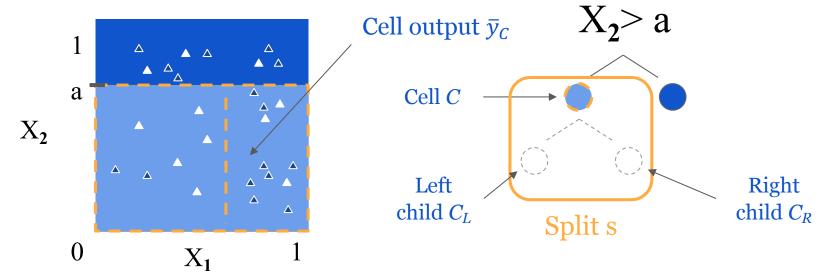
- Empirical risk minimization (ERM) is NP-hard [Hyafil & Rivest, 1976]
- Greedy algorithms
 - Choose the "best" local update
 - o CART [Breiman, Friedman, Olshen, Stone, 1984]
 - o Many others: C4.5 [Quinlan, 1993], ID3 [Quinlan, 1986], GUIDE [Loh, 2009],...

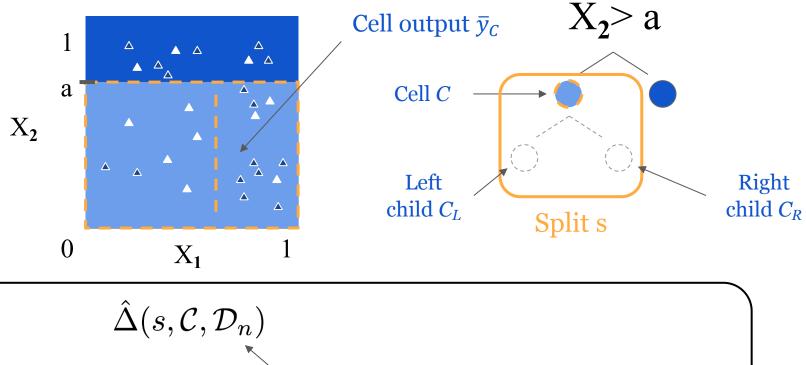


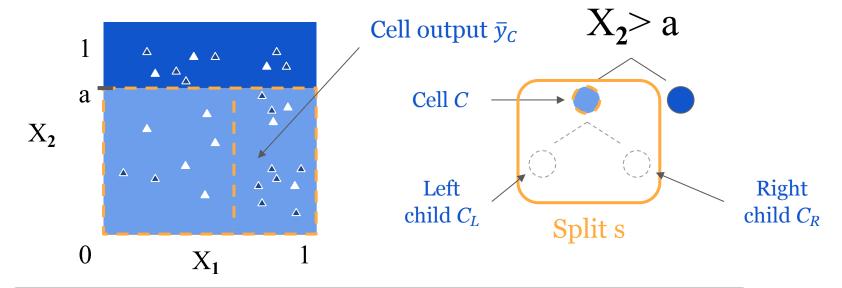




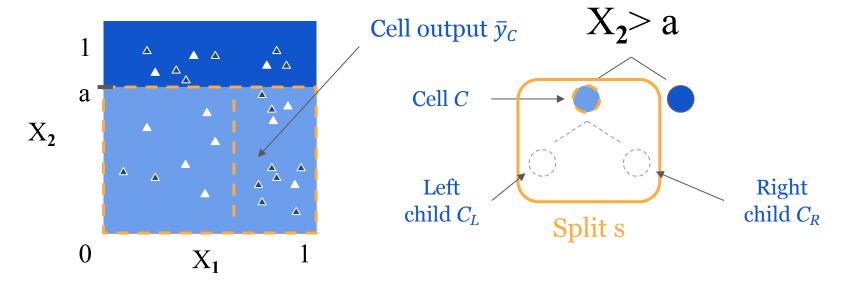








$$\hat{\Delta}(s,\mathcal{C},\mathcal{D}_n):=\sum_{x_i\in\mathcal{C}}(y_i-ar{y}_\mathcal{C})^2$$
Impurity decrease



$$egin{aligned} \hat{\Delta}(s, \mathcal{C}, \mathcal{D}_n) := & \left(\sum_{x_i \in \mathcal{C}} (y_i - ar{y}_{\mathcal{C}})^2 - \sum_{x_i \in \mathcal{C}_R} (y_i - ar{y}_{\mathcal{C}_R})^2
ight) \ & - \sum_{x_i \in \mathcal{C}_L} (y_i - ar{y}_{\mathcal{C}_L})^2
ight) / N(\mathcal{C}) \end{aligned}$$

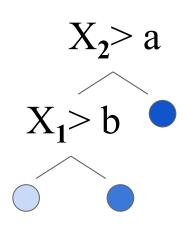
$$\hat{\Delta}(s, \mathcal{C}, \mathcal{D}_n) := \left(\sum_{x_i \in \mathcal{C}} (y_i - \bar{y}_{\mathcal{C}})^2 - \sum_{x_i \in \mathcal{C}_R} (y_i - \bar{y}_{\mathcal{C}_R})^2 - \sum_{x_i \in \mathcal{C}_R} (y_i - \bar{y}_{\mathcal{C}_L})^2 \right) / N(\mathcal{C})$$

Impurity decrease

$$\Delta(s, \mathcal{C}, \mathcal{D}_n) := \operatorname{Var}\{f^*(\mathbf{X}) \mid \mathbf{X} \in \mathcal{C}\} - \frac{\mathbb{P}\{\mathbf{X} \in \mathcal{C}_R\}}{\mathbb{P}\{\mathbf{X} \in \mathcal{C}\}} \operatorname{Var}\{f^*(\mathbf{X}) \mid \mathbf{X} \in \mathcal{C}_R\} - \frac{\mathbb{P}\{\mathbf{X} \in \mathcal{C}_L\}}{\mathbb{P}\{\mathbf{X} \in \mathcal{C}\}} \operatorname{Var}\{f^*(\mathbf{X}) \mid \mathbf{X} \in \mathcal{C}_L\}$$

Reduction in residual variance from making the split *s*

Random forests (RFs) are ensembles of **randomized** CART trees [Breiman, 2001]



• Each tree is grown on a **bootstrap** resample of \mathcal{D}_n

At each node, the features
 are subsampled before
 choosing the best split

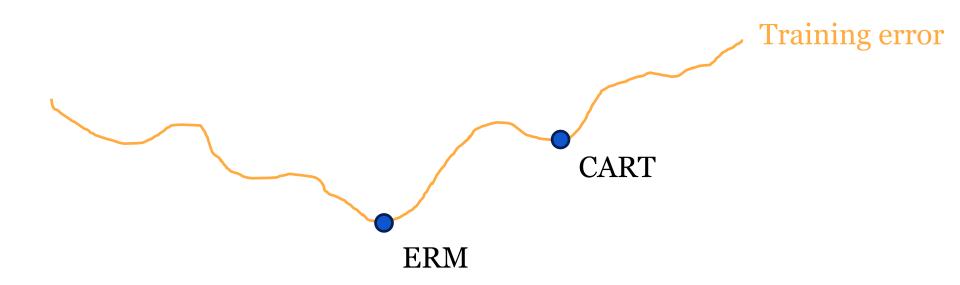
Random forests (RFs) are ensembles of randomized

Independent random seeds CART trees [Breiman, 2001]

B trees

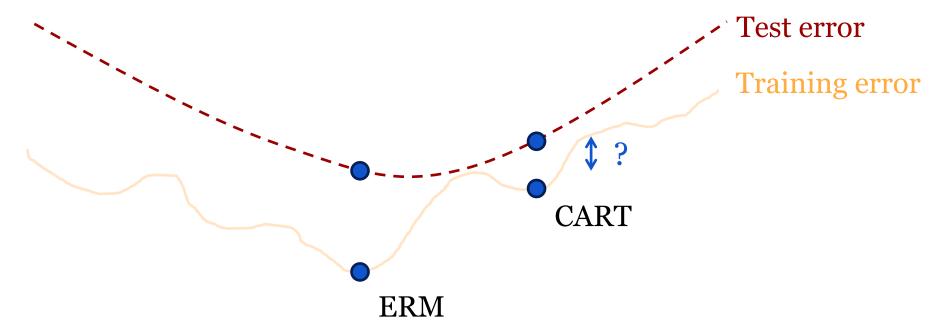
The big question...

The big question...
Is there a statistical-computational trade-off?



The big question...

Is there a statistical-computational trade-off?



Next step: Identify the right statistical framework

High-dimensional analysis of CART / RFs

- Given i.i.d. data $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1}^n$
- $Y_i = f^*(X_i) + \epsilon_i, X_i \sim \nu$
- Assume $f^*(x) = f_0^*(x_S)$ for some feature index set S of size s
- Notation: $\Re\left(\hat{f}, f_0^*, d, n\right) = \mathbb{E}_{\mathcal{D}_n, \Theta, \mathbf{X}}\left\{\left(\hat{f}(\mathbf{X}; \mathcal{D}_n, \Theta) f^*(\mathbf{X})\right)^2\right\}$
- Definition: We say that an estimator \hat{f} is **high-dimensional consistent** if

$$\lim_{d,n\to\infty} \frac{\log n}{d} = 0 \quad \text{and} \quad \lim_{d,n\to\infty} \Re\left(\hat{f}, f_0^*, d, n\right) = 0$$

• Known results: Sparsity + $\frac{\text{More}}{\text{assumptions}}$ \Rightarrow High-dimensional consistency

[Klusowski '20], [Syrganis & Zampetakis '20], [Chi et al. '22], [Mazumder & Wang '24], [Klusowski & Tian '24]

High-dimensional consistency and feature selection

• Definition: We say that an estimator \hat{f} is high-dimensional consistent if

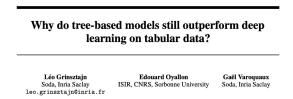
$$\lim_{d,n o \infty} rac{\log n}{d} = 0 \quad ext{and} \quad \lim_{d,n o \infty} \mathfrak{R}\left(\hat{f}, f_0^*, d, n\right) = 0$$

• Average depth of a tree is at most log *n*

High-dimensional consistency and feature selection

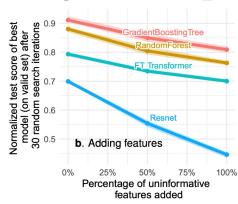
• Definition: We say that an estimator \hat{f} is high-dimensional consistent if $\lim_{d,n\to\infty}\frac{\log n}{d}=0$ and $\lim_{d,n\to\infty}\Re\left(\hat{f},f_0^*,d,n\right)=0$

- Average depth of a tree is at most $\log n \implies \text{Cannot split on all features}$
- Hence, **feature selection** is necessary for high-dimensional consistency
- Theoretical results: CART can perform feature selection given assumptions

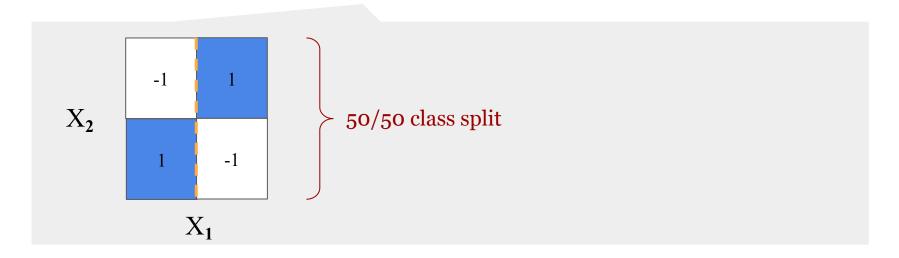


Finding 2: Uninformative features affect more MLP-like neural networks

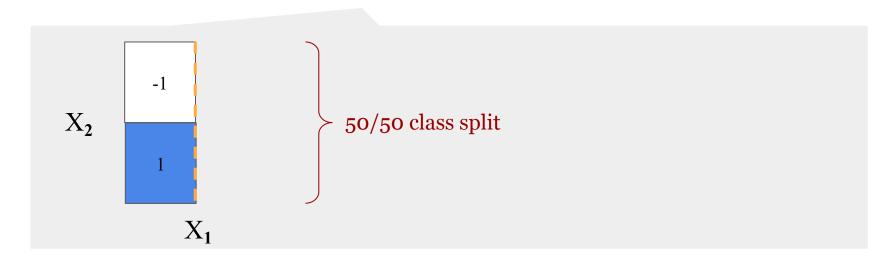
Tabular datasets contain many uninformative features



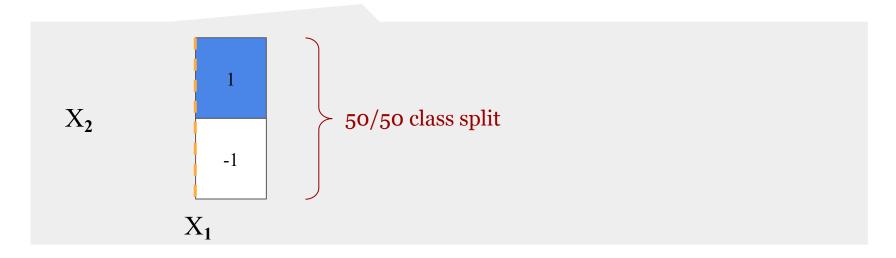
- Assume binary covariates $\{-1,1\}^d$ with uniform distribution
- Consider the XOR function $f^*(x) = x_1 x_2$ [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]



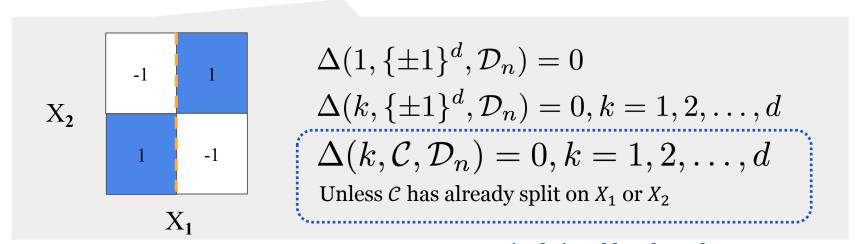
- Assume binary covariates $\{-1,1\}^d$ with uniform distribution
- Consider the XOR function $f^*(x) = x_1x_2$ [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]



- Assume binary covariates $\{-1,1\}^d$ with uniform distribution
- Consider the XOR function $f^*(x) = x_1x_2$ [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]



- Assume binary covariates $\{-1,1\}^d$ with uniform distribution
- Consider the XOR function $f^*(x) = x_1 x_2$ [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]



Marginal signal bottleneck

- Assume binary covariates $\{-1,1\}^d$ with uniform distribution
- Consider the XOR function $f^*(x) = x_1 x_2$ [Syrgkanis & Zampetakis '20], [Mazumder & Wang '24]
- CART makes "completely random" splits
- Not high-dimensional consistent
- Until now, no formal proof
- No generalization beyond this example

Address these

issues + more

Generalizing the XOR function

- Why is XOR hard?
 - "Pure interaction", contains no marginal information
 - o On the other hand, CART uses only marginal information to determine splits
- Other pure interactions: Boolean monomials
 - \circ For any $S \subset \{1, 2, \dots, d\}, \chi_S(x) = \prod_{i \in S} x_i$
- Proposition (Fourier basis for Boolean cube):
 - Any function $f: \{\pm 1\}^d \to \mathbb{R}$ has a unique decomposition $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$
 - ANOVA decomposition with contrast χ_S^2 and effect size α_S
 - Impose heredity constraint on the pattern of interactions

Generalizing the XOR function [Abbe et al., '21]; [Abbe et al., '22]

Definition: We say that a function $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$ has the

Staircase Property if
$$S_1 \subset S_2 \subset \cdots \subset S_k$$
, $|S_1| = 1$, $|S_j \setminus S_{j-1}| = 1$

• Examples: $x_1 + x_1 x_2$ \checkmark $x_1 x_2$ $x_1 + x_1 x_2 x_3$

Definition: We say that a function $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$ has the

Merged Staircase Property (MSP) if $|S_j \setminus \bigcup_{i=1}^{j-1} S_i| \leq 1, \quad j=1,2,\ldots,k$

• Examples:
$$x_1 + x_1x_2$$
 x_1x_2 $x_1 + x_2 + x_1x_2x_3$

Main results

Definition: We say that a function $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$ has the

Merged Staircase Property (MSP) if $|S_j \setminus \bigcup_{i=1}^{j-1} S_i| \leq 1, \quad j=1,2,\ldots,k$

Theorem (informal): Suppose f_0^* depends only on s covariates. Then

• (Necessity) If f^* does not satisfy MSP, then $\Re(\hat{f}_{CART}, f_0^*, d, n) = \Omega(1)$ whenever $n = \exp(O(d))$.

Main results

Definition: We say that a function $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$ has the

Merged Staircase Property (MSP) if $|S_j \setminus \bigcup_{i=1}^{j-1} S_i| \leq 1, \quad j=1,2,\ldots,k$

Theorem (informal): Suppose f_0^* depends only on s covariates. Then

- (Necessity) If f^* does not satisfy MSP, then $\Re(\hat{f}_{CART}, f_0^*, d, n) = \Omega(1)$ whenever $n = \exp(O(d))$.
- (Near sufficiency) If f^* satisfies MSP and Fourier coefficients are generic, then $\Re(\hat{f}_{CART}, f_0^*, d, n) = O(2^s \log d / n)$.

Main results

Definition: We say that a function $f(x) = \sum_{S \subset [d]} \alpha_S \chi_S(x)$ has the

Merged Staircase Property (MSP) if $|S_j \setminus \bigcup_{i=1}^{j-1} S_i| \leq 1, \quad j=1,2,\ldots,k$

Theorem (informal): Suppose f_0^* depends only on s covariates. Then

- (Necessity) If f^* does not satisfy MSP, then $\Re(\hat{f}_{CART}, f_0^*, d, n) = \Omega(1)$ whenever $n = \exp(O(d))$.
- (Near sufficiency) If f^* satisfies MSP and Fourier coefficients are generic, then $\Re(\hat{f}_{CART}, f_0^*, d, n) = O(2^s \log d / n)$.

Furthermore, regardless of whether f^* satisfies MSP, $\Re(\hat{f}_{ERM}, f_0^*, d, n) = O(2^s \log d / n)$.

Main results: Sample complexities

	MSP	Non-MSP
CART	$O(2^s \log d)$	$\exp(\Omega(d))$
ERM	$O(2^s \log d)$	$O(2^s \log d)$
Non-adaptive	$\exp(\Omega(d))$	$\exp(\Omega(d))$

• Establish a **statistical-computational trade-off**

Main results: Sample complexities

	MSP	Non-MSP
CART	$O(2^s \log d)$	$\exp(\Omega(d))$
ERM	$O(2^s \log d)$	$O(2^s \log d)$
Non-adaptive	$\exp(\Omega(d))$	$\exp(\Omega(d))$

- Establish a statistical-computational trade-off
- **Characterize** the regression functions for which CART is high-dimensional consistent

Main results: Sample complexities

	MSP	Non-MSP
CART	$O(2^s \log d)$	$\exp(\Omega(d))$
ERM	$O(2^s \log d)$	$O(2^s \log d)$
Non-adaptive	$\exp(\Omega(d))$	$\exp(\Omega(d))$

- Establish a statistical-computational trade-off
- Characterize the regression functions for which CART is high-dimensional consistent
 - Lower bounds hold more broadly for **RFs** and other greedy trees and ensembles
 - Lower bounds hold when there is no noise
 - Lower bounds have **robust** versions that hold for MSP functions

Head-to-head comparison with neural networks

- Recent work in neural network theory: What types of functions are learnable by 2-layer neural networks optimized using SGD? [Abbe et al. '21], [Abbe et al., '22], [Barak et al., '22], [Abbe et al., '23], [Suzuki et al., '23], [Glasgow, '24], [Kou et al., '24], [Nichani et al., '23]*, [Fu et al., '24]*, ...
- [Abbe et al. '22] studied binary features under the **mean field regime**

- Fully connected, large width, (small) constant step size, online SGD for O(d) iterations [one sample per iteration]
- SGD dynamics can be approximated by nonlinear PDE [Mei et al. '18]

Head-to-head comparison with neural networks

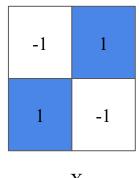
- Recent work in neural network theory: What types of functions are learnable by 2-layer neural networks optimized using SGD? [Abbe et al. '21], [Abbe et al., '22], [Barak et al., '22], [Abbe et al., '23], [Suzuki et al., '23], [Glasgow, '24], [Kou et al., '24], [Nichani et al., '23]*, [Fu et al., '24]*, ...
- [Abbe et al. '22] studied binary features under the **mean field regime**
 - MSP characterizes learnability
 - \circ (Necessity) Learnable if f^* satisfies* MSP and Fourier coefficients are generic
 - \circ (Near sufficiency) Not learnable if f^* does not satisfy MSP

Head-to-head comparison with neural networks

	MSP	Non-MSP
CART	$O(2^s \log d)$	$\exp(\Omega(d))$
ERM	$O(2^s \log d)$	$O(2^s \log d)$
Non-adaptive	$\exp(\Omega(d))$	$\exp(\Omega(d))$
Two-layer NNs [Abbe et al. '22]	O(d)	$\omega(d)$

Why are lower bounds hard? E.g., XOR

- Naive strategy: Prove that CART never splits on X_1 or X_2
 - Need concentration for impurity decrease values

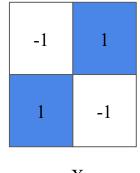


W.h.p.
$$\left| \hat{\Delta}(k, \mathcal{C}, \mathcal{D}_n) - \Delta(k, \mathcal{C}, \mathcal{D}_n) \right| = O\left(n^{-1/2}\right)$$

Why are lower bounds hard? E.g., XOR

2

- Naive strategy: Prove that CART never splits on X_1 or X_2
 - Need concentration for impurity decrease values for all possible splits

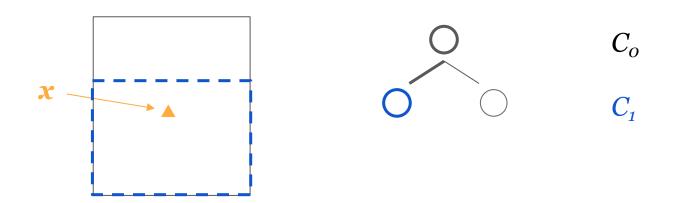


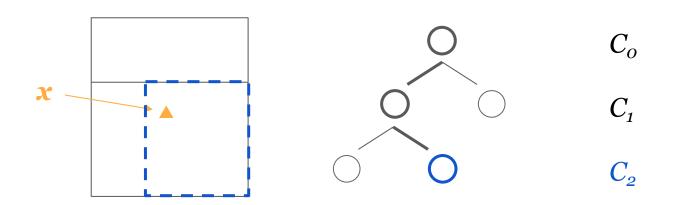
W.h.p.
$$\sup_{\mathcal{C},k} \left| \hat{\Delta}(k,\mathcal{C},\mathcal{D}_n) - \Delta(k,\mathcal{C},\mathcal{D}_n) \right| = O\left(n^{-1/2}\right)$$

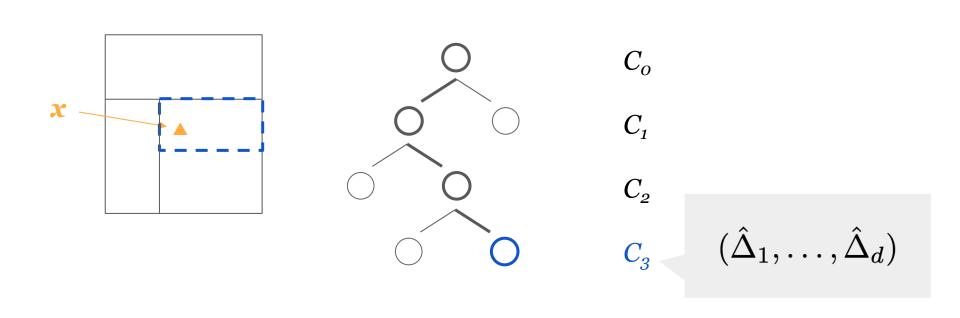
Why are lower bounds hard? E.g., XOR

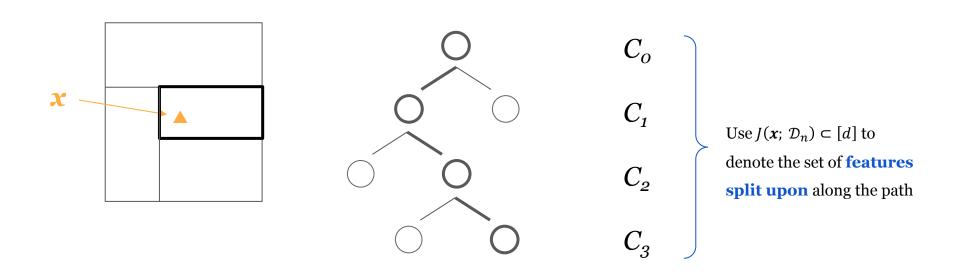
-1 1 1 -1

- Naive strategy: Prove that CART never splits on X_1 or X_2
 - Need concentration for impurity decrease values for all possible splits
- New strategy: Prove that for a single root-to-leaf path, CART never splits on X_1 or X_2
 - New interpretation of CART root-to-leaf path as a stochastic process
 - Use coupling and symmetry









Reduction to bounding $\mathbb{P}\{1,2 \notin J(X;\mathcal{D}_n)\}\$

-1 1 1 1 X₁

$$\mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \left(\hat{f}(\mathbf{X}; \mathcal{D}_n) - f^*(\mathbf{X}) \right)^2 \right\}$$

tower property

$$= \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \mathbb{E}_{\mathbf{X}} \left\{ \left(\hat{f}(\mathbf{X}; \mathcal{D}_n) - f^*(\mathbf{X}) \right)^2 \mid \mathbf{X}_{[d] \setminus \{1,2\}} \right\} \right\}$$

$$\geq \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \mathbb{E}_{\mathbf{X}} \left\{ \left(\hat{f}(\mathbf{X}; \mathcal{D}_n) - f^*(\mathbf{X}) \right)^2 \mid \mathbf{X}_{[d] \setminus \{1,2\}} \right\} \mathbf{1}_{\{1,2 \notin J(\mathbf{X}; \mathcal{D}_n)\}} \right\}$$

$$\geq \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \operatorname{Var} \{ f^*(\mathbf{X}) \} \cdot \mathbf{1}_{\{1,2 \notin J(\mathbf{X}; \mathcal{D}_n)\}} \right\}$$

When 1, 2 $\notin J(X; \mathcal{D}_n)$, then

- $\hat{f}(X; \mathcal{D}_n)$ is constant with respect to $X_{\{1,2\}}$
- $\mathbb{E}_{X}\left\{\left(\hat{f}(\boldsymbol{X};\mathcal{D}_{n})-f^{*}(\boldsymbol{X})\right)^{2}\mid\boldsymbol{X}_{[d]\setminus\{1,2\}}\right\}\geq\operatorname{Var}\left\{f^{*}(\boldsymbol{X})\right\}$

Reduction to bounding $\mathbb{P}\{1,2 \notin J(X; \mathcal{D}_n)\}\$

$$\mathbb{E}_{\mathbf{X},\mathcal{D}_n}\left\{\left(\hat{f}(\mathbf{X};\mathcal{D}_n) - f^*(\mathbf{X})\right)^2\right\}$$

The property
$$= \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \mathbb{E}_{\mathbf{X}} \left\{ \left(\hat{f}(\mathbf{X}; \mathcal{D}_n) - f^*(\mathbf{X}) \right)^2 \mid \mathbf{X}_{[d] \setminus \{1,2\}} \right\} \right\}$$

$$\geq \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \mathbb{E}_{\mathbf{X}} \left\{ \left(\hat{f}(\mathbf{X}; \mathcal{D}_n) - f^*(\mathbf{X}) \right)^2 \mid \mathbf{X}_{[d] \setminus \{1,2\}} \right\} \mathbf{1} \{1, 2 \notin J(\mathbf{X}; \mathcal{D}_n) \} \right\}$$

$$\geq \mathbb{E}_{\mathbf{X},\mathcal{D}_n} \left\{ \operatorname{Var} \{ f^*(\mathbf{X}) \} \cdot \mathbf{1} \{1, 2 \notin J(\mathbf{X}; \mathcal{D}_n) \} \right\}$$

$$= \operatorname{Var} \{ f^*(\mathbf{X}) \} \cdot \mathbb{P} \{ 1, 2 \notin J(\mathbf{X}; \mathcal{D}_n) \}$$

 Want to say that the root-to-leaf path splits on a random subset of features

 C_2

- Want to say that the root-to-leaf path splits on a random subset of features
- Hard to prove directly, so construct a related path

 C_o $C_o^{(1)}$

 $C_1^{(1)}$

 $C_2^{(1)}$

 $C_3^{(1)}$

- Want to say that the root-to-leaf path splits on a random subset of features
- Hard to prove directly, so construct a related path
- Prove the desired property for the related path

 C_o $C_o^{(1)}$

 $C_1^{(1)}$

 $C_2^{(1)}$

 $C_3^{(1)}$

- Want to say that the root-to-leaf path splits on a random subset of features
- Hard to prove directly, so construct a related path
- Prove the desired property for the related path

 C_o $C_o^{(1)}$

 $C_{\scriptscriptstyle 1}^{\,(1)}$

 $C_2 \approx C_2^{(1)}$

 $C_3^{(1)}$

•

Key Takeaways

- Explored the limits of greedy optimization with CART & RFs
- Some functions (e.g., XOR) are hard to learn
- Lower bounds reveal fundamental statistical-computational trade-offs
- CART & RFs vs. NNs. When to use each method?
- Tan, K., Balasubramanian, *Statistical-Computational Trade-offs for Recursive Adaptive Partitioning Estimators*, Major revision in AoS, 2024+

Thank you!

Questions?

jason.klusowski@princeton.edu