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Topic of talk I

Robbins-Monro algorithm (1951)

θn+1 = θn − γn+1H(θn, ηn+1), θ0 ∈ Rd ,

with
- (γk)k≥0 decreasing step sequence, (today: γk = A

k+B with A >

0,B ≥ 0),
- (ηk)k≥0 i.i.d. random variables,
- H function from Rd ×X to Rd ,
- X support of ηi .

The Robbins-Monro procedure is used to approximate the zeros of
the function: h(θ) = E[H(θ, η)].
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Topic of talk II

Set-up: Have observed the algorithm for n ≤ N with N ∈ N, i.e.
θ0, ..., θN fixed, non-random.
Want to understand stochastics of shifted Robbins-Monro
algorithm:(
θN

n

)
n≥0

= (θN+n)n≥0

These algorithm satisfy the following recurrence equation:

θN
n+1 = θN

n − γN
n+1H(θN

n , η
N
n+1)

with starting value θN
0 = θN , where ηN

n+1 = ηN+n+1, and
γN

n+1 = γN+n+1.
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Topic of talk III

Time change: k number of iterations of Robbins-Monro algorithm
after N,
New time: t

tN
k = γN

1 + · · ·+ γN
k ,

kN
t = inf{k ∈ N ; tN

k ≥ t}.

For γk = A
k+B with A = 1,B = 0 we have for N →∞

tN
k ≈ ln

(
1 + k

N

)
,

kN
t ≈ (exp(t)− 1)N.

Robbins-Monro algorithm in new time

θ̌N
t = θN

k for tN
k ≤ t < tN

k+1. 4 / 26



Topic of talk IV

Asymptotics of θ̌N
t for N →∞

For t in a finite interval [0,T ] it holds that

θ̌N
t = θ̄N

t + OP(N−1/2)

with

d
dt θ̄

N
t = −h(θ̄N

t ),

θ̄N
0 = θN

0 .

In old time:

θN
k = θ̄N

tN
k

+ OP(N−1/2)

for k ∈ [0, kN
T ].
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Topic of talk V

Weak convergence:

It holds for fixed T(
UN

t : 0 ≤ t ≤ T
)
→
(
XN

t : 0 ≤ t ≤ T
)

in distribution. Here:

UN
t = θ̌N

t − θ̄N
t√

γN
k

for tN
k ≤ t < tN

k+1,

dXN,i
t = ᾱXN,i

t dt −
d∑

j=1

∂hi
∂xj

(θ̄N
t ) · XN,j

t dt +
d∑

j=1
R1/2

ij (θ̄N
t )dW j

t ,

for i = 1, ..., d , with X0 = UN
0 where ᾱ = (2A(B + 1))−1 and R(θ)

covariance matrix of H(θ, η). 6 / 26



Topic of talk VI

For more details
- Nevel’son and Khas’minskĭı (1973),
- Benveniste, Métivier, and Priouret (1990),
- Duflo (1997),
- Kushner and Yin (2003).
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Topic of talk VII

Strong approximation
Put τN = inf{k : ‖UN

tN
k
‖ ≥ aN} with aN = Ca ln(N).

Theorem

Choose r > 6 and Ca,Cb > 0. Assume ‖θN
0 ‖ ≤ aNN−1/2 and C > 0

large enough. Make higher order smoothness assumptions on H and
h and moment conditions on H(θn, η).

Then for N > 1 there exist Robbins-Monro algorithms θN
k on k ∈

{1, 2, 3, ...} and diffusion processes XN
t on t ∈ [0,∞) with

P
(
‖(θN

k − θ̄N
tN
k

)− γ1/2
k XtN

k
‖ ≤ C(ln(k + N))r/(k + N)

for 0 ≤ k ≤ τN ∧ NCb

)
→ 1 for N →∞.
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Topic of talk VIII

Equivalent formulation in new time scale.

Theorem

Choose r > 6 and Ca,Cb > 0. Assume ‖θN
0 ‖ ≤ aNN−1/2 and C > 0

large enough. Make higher order smoothness assumptions on H and
h and moment conditions on H(θn, η).

Then for N > 1 there exist scaled Robbins-Monro algorithms UN
t on

t ∈ [0,∞) and diffusion processes XN
t on t ∈ [0,∞) with

P
(
‖UN

t − XN
t ‖ ≤ C(ln(kN

t + N))r/(kN
t + N)

for 0 ≤ t ≤ tN
τN∧NCb

)
→ 1 for N →∞.

9 / 26



Ingredients of the proof

(1) Truncation: truncated processes VN
t and Y N

t .
(2) Discretisation: consider VN

t and Y N
t on a grid of points t ∈ Jn

(3) bounds for differences of transition densities of VN
t and Y N

t for
neighbored points of Jn

(4) L1 bounds for differences of the joint densities (VN
t : t ∈ Jn) and

(Y N
t : t ∈ Jn)

(5) Conclude that there exist processes VN
t and Y N

t with

P
(
VN

t = Y N
t for all t ∈ Jn

)
→ 1 for N →∞.

(6) Conclude that the theorem holds with UN
t and XN

t replaced by
VN

t and Y N
t , respectively.

(7) Conclude that the theorem holds (with UN
t and XN

t )
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Remark on (4) =⇒ (5)

(4) L1 bounds for differences of the joint densities (VN
t : t ∈ Jn) and

(Y N
t : t ∈ Jn)

(5) Conclude that there exist processes VN
t and Y N

t with

P
(
VN

t = Y N
t for all t ∈ Jn

)
→ 1 for N →∞.

Standard argument: For densities f and g with

ξ =
∫

min{f (x), g(x)}dx = 1− 1
2

∫
|f (x)− g(x)|dx

there exist random variables X and Y with densities f and g ,
respectivlely, on the same probability space with

P(X = Y ) = ξ.

11 / 26



Remark on (5) =⇒ (6)=⇒ (7)

(5) Conclude that there exist processes VN
t and Y N

t with

P
(
VN

t = Y N
t for all t ∈ Jn

)
→ 1 for N →∞.

(6) Conclude that the theorem holds with UN
t and XN

t replaced by
VN

t and Y N
t , respectively.

(7) Conclude that the theorem holds (with UN
t and XN

t )

(5) =⇒ (6): The gird JN is chosen such that

|kN
t − kN

t′ | ≤ C(ln kN
t )r

for two neighbored elements t and t ′ of JN

(6) =⇒ (7): direct arguments
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Remaining steps

(1) Truncation: truncated processes VN
t and Y N

t .
(2) Discretisation: consider VN

t and Y N
t on a grid

of points t ∈ Jn

(3) bounds for differences of transition densities of VN
t and Y N

t for
neighbored points of Jn

(2)
√

Remains (1) and (3).
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Remark on (1)

(1) Truncation: truncated processes VN
t and Y N

t .
Can write:

UN
tN
k+1

= UN
tN
k

+ GN(tN
k ,UN

tN
k

)γN
k+1UN

tN
k

−
√
γN

k+1ξ

(
θ̄N

tN
k

+
√
γN

k UN
tN
k
, ηN

k+1

)
+ βN

k+1,

where

GN(tN
k , x) = αN

tN
k
I −

√√√√ γN
k

γN
k+1

∫ 1

0
Dh

(
θ̄N

tN
k

+ δx
√
γN

k

)
dδ.

and βN
k → 0, αN

tN
k
→ (2A(B + 1))−1 and Dh derivative of h (d × d

matrix). 14 / 26



Remark on (1)

This representation motivates the following truncated process VN
tk :

VN
tN
k+1

= VN
tN
k

+ FN(tN
k ,VN

tN
k

)γN
k+1VN

tN
k

−
√
γN

k+1ξ

(
θ̄N

tN
k

+
√
γN

k χN(VN
tN
k

), ηN
k+1

)
,

where

FN(t, x) = (2A(B + 1))−1 I −
∫ 1

0
Dh(θt + δχN(x)

√
γN

1 )dδ,

χN smooth with χN(x) = x for ‖x‖ ≤ aN and χN(x) = 0 for ‖x‖ ≥
2aN .

Major change: Replace x by χN(x) at some places.
Truncation: Make the structure of VN

t simple if ‖VN
t ‖ is large. 15 / 26



Remark on (1)

Smoothly "truncated" diffusion Y N
t :

dY N
t = FN(t,Y N

t )Y N
t dt + R1/2(θ̄N

t )dWt

with the same function FN as defined in the last slide.
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Remark on (3)

Itt remains to comment on
(3) bounds for differences of transition densities of VN

t and Y N
t for

neighbored points of Jn

For this step we will apply the following result:
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Remark on (3)

Theorem
For s < t and x , z ∈ Rd it holds that∫

Rd
|pN − qN |(s, t, x , z)dz

≤ C(lnN)2N−1/2√t − s,

where

qN(s, t, x , z) conditional density of Y N
t at z given Y N

s = x ,
pN(s, t, x , z) conditional density of VN

t at z given VN
s = x .

The theorem is an extension of a result in Konakov, M. and Huang
(2025) with stricter bounds and modified processes Y N

t and VN
t .

18 / 26



Remark on (3)

For the proof we make use of the parametrix method.
Short introduction to parametrix approach (Levi (1907),
McKean and Singer (1967)): Consider SDE in Rd of the form

Zt = z +
∫ t

0
b(s,Zs)ds +

∫ t

0
σ(s,Zs)dWs .

Additionally, consider the equation with coefficients "frozen" at the
point y and put p̃(s, t, x , y) = py (s, t, x , y) where pz(s, t, x , y) is
the Gaussian transition density of

Z̃v = Z̃0 +
∫ v

0
b(u, z)du +

∫ v

0
σ(u, z)dWu.
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Remark on (3)

We now use the backward and forward Kolmogorov equations:

∂p̃
∂s + L̃p̃ = 0, ∂p

∂s + Lp = 0, −∂p̃
∂t + L̃∗p̃ = 0, −∂p

∂t + L∗p = 0.

Together with the initial conditions

p̃(t, t, x , y) = δ(x − y) and p(t, t, x , y) = δ(x − y).

we can write the basic equality for the parametrix method:
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Remark on (3)

p(s, t, x , y)− p̃(s, t, x , y)

=
∫ t

s
du ∂

∂u

[∫
Rk

p(s, u, x , z)p̃(u, t, z , y)dz
]

=
∫ t

s
du
∫
Rk

[
p̃(u, t, z , y)L∗p(s, u, x , z)

−p(s, u, x , z)L̃p̃(u, t, z , y)
]
dz

=
∫ t

s
du
∫
Rk

[
p(s, u, x , z)(L− L̃)p̃(u, t, z , y)

]
dz

= p ⊗ H(s, t, x , y)

where H = [L− L̃]p̃ and the convolution type binary operation ⊗

(f ⊗ g)(s, t, x , y) =
∫ t

s
du
∫
Rd

f (s, u, x , z)g(u, t, z , y)dz .
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Remark on (3)

Iterative application of p − p̃ = p ⊗ H gives an infinite series

p =
∞∑

r=0
p̃ ⊗ H(r),

where p̃ ⊗ H(0) = p̃ and p̃ ⊗ H(r+1) = (p̃ ⊗ H(r))⊗ H for
r = 0, 1, 2, ... . An important property of this representation is that it
allows us to express the non-Gaussian density p in terms of
Gaussian densities p̃. For our diffusion Y N

t we get:

qN(t, s, x , y) =
∞∑

r=0
q̃N ⊗ H(r)

N (t, s, x , y)

with an appropriate choice of a Gaussian density q̃N and operator
HN .
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Remark on (3)

In Konakov, M. (2000) a similar series representation has been
proposed for discrete time Markov processes. For the transition
densities of VN

t it is given by

pN(tN
l , tN

k , x , y) =
N∑

r=0
p̃N ⊗N K

(r)
N (tN

l , tN
k , x , y),

with p̃N density of sum of independent variables and discretized time
convolution

(f ⊗N g)(tN
i , tN

j , x , y) =
j−1∑
k=i

γN
k+1

∫
Rd

f (tN
i , tN

k , x , z)g(tN
k , tN

j , z , y)dz

and g ⊗N K
(r)
N = (g ⊗N K

(r−1)
N )⊗N KN with g ⊗N K

(0)
N = g .
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Remark on (3)

Back to our theorem that states a bound on |pN − qN |(s, t, x , y).
Idea: compare:

pN(tN
l , tN

k , x , y) =
N∑

r=0
p̃N ⊗N K (r)

N (tN
l , tN

k , x , y),

and

qN(t, s, x , y) =
∞∑

r=0
q̃N ⊗ H(r)

N (t, s, x , y)
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Remark on (3)

We have to compare in a series expansion:
(a) operator H(r)

N (t, s, x , y) with operator K (r)
N for all number r of

concolutions,
(b) discretized time convolution ⊗N with continuous version ⊗,
(c) p̃N density of sum of independent variables with Gaussian densities

q̃N

Con (a) and (b) need many technical considerations and many smoothness
assumptions on H, h and density of H.

Pro Need no conderations on the transition densities of Markov processes
and diffusions.
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Thank you!

To Do Strong approximations for Robbins-Monro algorithm

θn+1 = θn − γn+1H(θn, ηn+1), θ0 ∈ Rd ,

with other choices of γk , e.g. γk = A
kβ+B with A > 0,B ≥ 0 and

1
2 < β < 1.
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