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Topic of talk |

Robbins-Monro algorithm (1951)

0n—|—1 = on - '7n+1H(6n7 77n+1)7 00 € Rda

with
- (7k)k>0 decreasing step sequence, (today: yx = ,{J%B with A >
0,8 > 0),
- (Mk)k>0 i.i.d. random variables,
- H function from RY x X to RY,
- X support of 7;.

The Robbins-Monro procedure is used to approximate the zeros of
the function: h(0) = E[H(0,n)].



Topic of talk Il

Set-up: Have observed the algorithm for n < N with N € N, i.e.
g, ..., 0y fixed, non-random.

Want to understand stochastics of shifted Robbins-Monro
algorithm:

<0r,y> >0 = (0N+n)n20 J

These algorithm satisfy the following recurrence equation:

9914-1 = er,y - ’Yr,y-i-lH(erlya "7rly+1) J

with starting value 9(')\’ = Oy, where 77,’,\’+1 = NN4n+1, and

N _
Yn+1 = VN+n+1-



Topic of talk IlI

Time change: k number of iterations of Robbins-Monro algorithm
after N,
New time: t

=1 R

kN =inf{k e N; t) > t}.

Forfyk:kJriBwithA:l,B:Owehavefor N — oo

k
tf’zln(l—f—ﬁ),

kN ~ (exp(t) — 1)N.

Robbins-Monro algorithm in new time

ON = o for tfY <t <t . -



Topic of talk IV

Asymptotics of Ov?’ for N -

For t in a finite interval [0, T] it holds that

g = GV + Op(NV2) |
with
S = (@),
e =w
In old time:
OF = 0l + Op(N 112 J

for k € [0, kM.



Topic of talk V

Weak convergence:

It holds for fixed T

(Uo<e<T)— (XMo<t<T)

in distribution. Here:

N oN
91‘ — 01.“ N N
for tk S t < tk+17

V¥

d d
N ohj = - 1/2.2 j
dXNJ — XN’Idt _ el QN .XN’Jdt R/ HN AW/
t QX j§:1 8><j( ) Xe +J_z:1 ij (6¢)d W,

U —

for i =1,...,d, with Xo = U}’ where & = (2A(B +1))~! and R(0)
covariance matrix of H(6, 7). 6/26
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For more details
- Nevel'son and Khas'minskii (1973),
- Benveniste, Métivier, and Priouret (1990),
- Duflo (1997),
- Kushner and Yin (2003).
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Strong approximation
Put 7y = inf{k : HUZ\/\,H > an} with ay = G, In(N).
k

Theorem

Choose r > 6 and C,, Cp, > 0. Assume ||6}| < ayN~—Y/2 and C > 0
large enough. Make higher order smoothness assumptions on H and
h and moment conditions on H(0,,n).

Then for N > 1 there exist Robbins-Monro algorithms 9,’(\1 on k €
{1,2,3,...} and diffusion processes XN on t € [0, 00) with

(168 — %) — 1 Xepll < Clink + W)Y/ (k+ )

forogkgTNANCb>—>1for/v—>oo.

S /26



Topic of talk VIII

Equivalent formulation in new time scale.

Theorem

Choose r > 6 and C,, Cp, > 0. Assume ||6§'| < ayN=Y/? and C > 0
large enough. Make higher order smoothness assumptions on H and
h and moment conditions on H(0,,n).

Then for N > 1 there exist scaled Robbins-Monro algorithms UYN on
t € [0, 00) and diffusion processes XN on t € [0, 00) with

B[V = X < Clnkt + M)/ + )

N
for 0 S t < tTN/\NCb

>—>1forN—>oo.

9/26



Ingredients of the proof

(1) Truncation: truncated processes VN and Y}V
2) Discretisation: consider VN and YN on a grid of points t € J,
t t

(3) bounds for differences of transition densities of VN and YN for
neighbored points of J,

(4) Ly bounds for differences of the joint densities (VN : t € J,) and
(YN :te )
(5) Conclude that there exist processes VN and YV with

P(v,_!" = YN forall t € J,,) — 1 for N — oo.

(6) Conclude that the theorem holds with UN and X} replaced by
VN and YN, respectively.

(7) Conclude that the theorem holds (with UN and X}V)

10/26



Remark on (4) = (5)

(4) L1 bounds for differences of the joint densities (VN : t € J,) and
(YN:teJ)
(5) Conclude that there exist processes V¥ and Y}V with

P(VtN =YNforall t e J,,) — 1 for N — oo.

Standard argument: For densities f and g with

¢ = /min{f(x),g(x)}dx _1- %/|f(x) _ g(x)ldx J

there exist random variables X and Y with densities f and g,
respectivlely, on the same probability space with

P(X = Y) =¢. |

11/26




Remark on (5) = (6)= (7)

(5) Conclude that there exist processes VN and YN with
P(Vt"’ =YNforall t e J,,) — 1 for N — oo.

(6) Conclude that the theorem holds with UN and X/ replaced by
VN and YN, respectively.

(7) Conclude that the theorem holds (with UN and X}V)

(5) = (6): The gird Jy is chosen such that

|k — kff| < C(n k)"

for two neighbored elements t and t’ of Jy

(6) = (7): direct arguments

12/26



Remaining steps

(1) Truncation: truncated processes VN and Y}V

(2) Discretisation: consider VN and YN on a grid
of points t € J,

(3) bounds for differences of transition densities of VN and YN for
neighbored points of J,

(2 v
Remains (1) and (3).

13/26



Remark on (1)

(1) Truncation: truncated processes VN and YN

Can write:
Ut'\k,(,+1 = U + Gu(t, U )'Yk-i—lU
’Y[,<V+1£ <9_:-ZV + ’YLVUZZM 77/,<V+1> + /BII(V+17
where
Gn(t),x) = t,\,l - ’yk / Dh 9 4 5x\/'y,’(v> dod.
7k+1
and Bl — 0, o/ e — (2A(B + 1))t and Dh derivative of h (d x d

matrix). 14/26



Remark on (1)

This representation motivates the following truncated process Vt’kv:

thyv = vy &N + Fu(tl, VtN)’Yk+1 V

7k+1§ <9t'\l + /YK XN(V )s 77k+1>

where

Fu(t,x) = (2A(BB+1)~t1— /Olph(ét + Sxn(x)y/ )ds,

xn smooth with xn(x) = x for x| < ay and xn(x) = 0 for ||x]| >
23/\/.

v

Major change: Replace x by yn(x) at some places.
Truncation: Make the structure of VN simple if | VN|| is large.

15/26



Remark on (1)

Smoothly "truncated" diffusion YV:

ayN = Fu(t, YV YNar + RY2(§N)aw, |

with the same function Fp as defined in the last slide.

16 /26



Remark on (3)

Itt remains to comment on

(3) bounds for differences of transition densities of VN and YN for
neighbored points of J,

For this step we will apply the following result:

17/26



Remark on (3)

Fors < t and x,z € RY it holds that

[ 1o = anl(s t.x, 2)dz
Rd

< C(InN)2N~Y2/t —s,
where

an(s, t,x, z) conditional density of YtN at z given YSN = X,

pn(s, t, x, z) conditional density of VN at z given VN = x.

The theorem is an extension of a result in Konakov, M. and Huang
(2025) with stricter bounds and modified processes Y,V and V/V.

18 /26



Remark on (3)

For the proof we make use of the parametrix method.
Short introduction to parametrix approach (Levi (1907),
McKean and Singer (1967)): Consider SDE in R? of the form

t t
Zi=z+ / b(s, Zs)ds + / o(s, Zs)dWs. J
0 0

Additionally, consider the equation with coefficients "frozen" at the
point y and put p(s, t,x,y) = p¥(s, t,x,y) where p*(s, t,x,y) is
the Gaussian transition density of

Z, :20+/ b(u,z)du+/ o(u,z)dW,,. J
0 0
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Remark on (3)

We now use the backward and forward Kolmogorov equations:

op | 7. op _ P 7 dp p =
8_+L =0, &—l—Lp—O, 8t+Lp_0’ 8t+L =0.

Together with the initial conditions

ﬁ(tvt?x7y):5(x_y) and p(t,t,X,y)Z(S(X—y). J

we can write the basic equality for the parametrix method:

20/26



Remark on (3)

p(s, t,x,y) — p(s, t,x,y)

—/du—{/ psuxz)p(utzy)dz}
—/du/ [ (u,t,z,y)L*p(s, u,x,z)

s 50, 2 5 2 y)} dz

= [ [ pts. 00, 2)(L~ DB 2. 9)] 2

:p®H(57 t;X;}/)

where H = [L — []p and the convolution type binary operation ®

t
(Fog)s, toxy)= [ du [ f(s.ux2)gut.z.y)dz
s R

21/26



Remark on (3)

Iterative application of p — p = p ® H gives an infinite series

p=> paH", J

r=0

where p® H® = p and p @ HID = (o H(N) @ H for
r=20,1,2,... . An important property of this representation is that it
allows us to express the non-Gaussian density p in terms of
Gaussian densities p. For our diffusion Y,V we get:

qN(t757X7}/) = ZEIN@HI(\;)(t’S’X’y)
r=0

with an appropriate choice of a Gaussian density gy and operator
Hy.

22/26



Remark on (3)

In Konakov, M. (2000) a similar series representation has been
proposed for discrete time Markov processes. For the transition
densities of VN it is given by

N
pN(th7tll<V=X7y) = ZﬁN@NK%‘)(t/V,t/(V,X,y),
r=0

with Py density of sum of independent variables and discretized time
convolution

i
(fFeng)(th, ), x,y) = > 7 /Rd F(EN e x,2)g(th, ), z,y)dz
k=i

and g Qp /C =(g®n /C )) ®n Ky with g @y ’C( ) =

23 /26



Remark on (3)

Back to our theorem that states a bound on |py — gn|(s, t, x, ¥).
Idea: compare:

N
pN(th7tll<VuX7y) = Zﬁ,\l(g)l\lIo{/(\lr)(t/N’tll(\l’x’-y)7
r=0

and

qN(t757X7y) = ZEIN (29 HI(\;)(ta S7X7.y)
r=0

24 /26



Remark on (3)

We have to compare in a series expansion:

(a) operator H,(Vr)(t,s,x,y) with operator K,(Vr) for all number r of
concolutions,

(b) discretized time convolution ®p with continuous version ®,
(c) P density of sum of independent variables with Gaussian densities
an
Con (a) and (b) need many technical considerations and many smoothness
assumptions on H, h and density of H.

Pro Need no conderations on the transition densities of Markov processes
and diffusions.
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Thank youl

To Do Strong approximations for Robbins-Monro algorithm

0n—|—1 = 0n - 'Yn—&—lH(anynn—i—l)v 00 € Rda

with other choices of 7k, e.g. Yk = 715 with A>0,B> 0 and
I<p<l
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