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Optimal Transport
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Monge Problem

® Given marginals y,v € P(R%) & cost function c:

Monge Problem (1781)

Find a transport map 7" : R? — R? that solves

inf
T: poT—1=v

Exule(X, T(X))]
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Monge Problem

® Given marginals y,v € P(R%) & cost function c:

Monge Problem (1781)

Find a transport map 7 : R? — R¢ that solves

inf
T: poT—1=v

Exule(X, T(X))]

{T : po T~ = v} may be empty...
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Monge & Kantorovich Problems

Monge Problem (1781) Kantorovich Problem (1930)

Find a transport map 7' : R¢ — R¢ that Find a coupling 7 € P(R%) that solves

solves
inf E(Xy)Nﬁ[c(X Y)]

inf  Ex.,[c(X,T(X))] o \
T: poT—1=v OT cost
{T:po T-1 = v} may be empty... Well-posed for Isc cost
v I(p,v) # 2

v inf = min

6/29



Wasserstein Distances

® OT cost induces a metric on the space of probability measures

Woasserstein Distance

. 1
Wy v) = inf (ExyllX =Y, pe[1,00)

mell(p,v)

e Applications: parametric estimation (W-GAN) and testing problems

Panaretos-Zemel '21; Chewi et al. '24
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Beyond OT

® Various applications require matching heterogeneous & structured datasets

Wesy " NORTH - 38 2. ot

' i
\ ' i R
R
SOUTH —» afgior |
- o
WEST —> ufesr

Solomon-Peyré-Kim-Sra '16 Alvarez-Melis-Jaakkola "18
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Beyond OT

® Various applications require matching heterogeneous & structured datasets

i

f.\'

v

NORTH —» 3a¥
WEST — afesm

Solomon-Peyré-Kim-Sra '16 Alvarez-Melis-Jaakkola '18

e Goals:

@ Compare similarity btw two data sets;
® Obtain matching or alignment
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® Gromov-Wasserstein Distance

9/29



Gromov-Wasserstein Distance

LIMIT LAWS FOR GROMOV-WASSERSTEIN ALIGNMENT WITH
APPLICATIONS TO TESTING GRAPH ISOMORPHISMS

GABRIEL RIOUX, ZIV GOLDFELD, AND KENGO KATO

ABSTRACT. The Gromov-Wasserstein (GW) distance enables comparing metric measure spaces
based solely on their internal structure. orphic translormations. This
for comparing ¥ isomorphic
Sich s unllolled sraphs or abjocs cubedded i space. However, apart from the recontly derived
empirical convergence rates for the quadratic GW problem, a statistical theory for valid estimation
and inference remins largely obseure. Pushing the frontier of statistical GW fusther, this work
derives several settings of interest. (i) discrete.
(i) semi-discrete, o [m) gonoral distributions wnder mument coustraints under the coteopically
regularized GW distance. The derivations ovel stability analysis of the GW functional
in the marginal distibtions. The lomit ses thes ollow b. an adaptation of b functional dela
method. otic normality fails to hold in most cases, we establish the consistency of
an effieient estimation procedure for the o g law in the discrete ease, bypassing the need
for computationally intensive resampling methods. We apply these fiudings to testing whether
eollctions of unlabeled graphs are senorate rom distributions that are omorphic to sach other

making it invariant to isor

he first limit laws for GW

arXiv:2410.18006

CONVERGENCE OF EMPIRICAL GROMOV-WASSERSTEIN
DISTANCE

KENGO KATO AND BOYU WANG

Asstract. We study rates of convergence for estimation of the Gromov-Wasserstein
(GW) distance. For two marginals supported on compact subsets of B> and R

spectively, with min{d,dy} > 4, prior work established the rate re DT in L for
the plug-i irical estimator based on 7 iid. samples. We extend this fundamental
result to marginals with unbounded supports, assuming only finite polynomial moments.
Our proof techniques for the upper bounds can be adapted to obtain sample e
ity results for penalized Wasserstein alignment that encompasses the GW distance and
Wasserstein Procrustes. Furthermore, we establish matching minimax lower bounds (up
1o logarithmic factors) for estimating the GW distance. Finally, we establish deviation
inequalities for the error of empirical G eases where two marginals have compact
supports, exponential tails, or Bnite polynomial moments. The deviation inequalities
vield that the same rate n” =T 537 holds for empirical GW also with high probab

arXiv:2508.03985
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Gromov-Wasserstein Distance

® Given metric measure spaces (X,dx, 1) & (Y, dy,v)

Gromov-Wasserstein Distance (Memoli ‘11; Sturm ‘12)
For p,q € [1,00),

1/p
GWop (1, v) = Weinlbft,y) (E(()‘?);?)N” [|d% (X, X) = dy, (Y, YI)|p])
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Gromov-Wasserstein Distance

® Given metric measure spaces (X,dx, 1) & (Y, dy,v)

Gromov-Wasserstein Distance (Memoli ‘11; Sturm ‘12)
For p,q € [1,00),

1/p
GWop (1, v) = Weinrbt;,y) (E(%};?)N” [|d% (X, X) = dy, (Y, YI)|p])

® GW, , defines a metric on the space of all Polish metric measure spaces modulo
measure-preserving isometries:

GW, (1, v) = 0 < 3T : spt(u) — spt(v) isometry s.t. v = Tup
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Discrete Marginals

N N,
® Suppose pu =) ;7 by, and v =3 22, v;0y,
® GW objective: 35, yciny ) .ie(ns] Cistiminjr with Cigrr = |dS (zi, 25) — d5, (i, ;)P

® Cost tensor Cjjy relies on relational rather than positional similarities

mlntra-Lang, Similarities (EN) ]Intra-Lang, Similarities (IT) N Optimal GW Coupling
most alle most
yor otre york
station atenatore sation
media scrittore. media
Z never £ presenza Z never
went contea went
users o users
means dallo means
yet difesa yet
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N &4 e
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Alvarez-Melis-Jaakkola '18
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Graph Isomorphism
® Consider a random weighted graph with N vertices with no self-loop
Edges {i,j} have independent weights ~ p;; € P([0,00)) (zero-weight < no edge)
Identify a graph distribution v with (p;;)1<i<j<n
Call two graph distributions vy <> (po.i;)i<; and vy <> (p1,i;)i<; isomorphic iff

Jo : [N] — [N] permutation s.t. p1;; = poo(i)e(), Vi < J.

{1.2,3,4,5.6,7.8.9,10}

{1,10,2,3,9,5.4,7,6,8}
—
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Graph Isomorphism

e Consider a random weighted graph with IV vertices with no self-loop

* Edges {i,7} have independent weights ~ p;; € P([0,00)) (zero-weight < no edge)
® |dentify a graph distribution v with (p;;)1<i<j<n

e Call two graph distributions vy <> (po,i;)i<; and v1 <> (p1,ij)i<; isomorphic iff

Jo : [N] — [N] permutation s.t. p1;; = poo(i)e(), Vi < J.

Theorem (Rioux-Goldfeld-K ’'24)

There is a known embedding ¢ : P([0,00))NN=1/2 — P(RN) such that vy and v, are
isomorphic iff GWz5(¢(vp), t(r1)) =0
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Challenges

® GW objective

7 / // @ (2, @) — (g, o) P dr(z, ) (&, )
: XxXY XxXY .

=:F(m)

is bilinear and nonconvex
® Lack of a comprehensive duality theory for general GW

15/29



Challenges

® GW objective

oo [[ ] v - dyw)Pan i y)
: XxXY XxXY .

=:F(m)

is bilinear and nonconvex
® Lack of a comprehensive duality theory for general GW
® One exception to the latter: GW;, with Euclidean metric measures spaces:

(X,dx) =R [-)  (P,dy) =R, |-
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GW;, case
® Assume w.l.o.g. u, v have mean zero
® GW,, objective can be decomposed as

F(r) = (something independent of )

- {4 [ 1elPlol? ante, )+ [ a0 arto)

J

=:G(m)
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GW;, case
® Assume w.l.o.g. u, v have mean zero
® GW,, objective can be decomposed as

F(r) = (something independent of )

- {4 [ 1elPlol? ante, )+ [ a0 arto)

J

=:G(m)
Variational Representation (Zhang et al. '24)
For ca(z,y) = —4|z|*||y||* — 322" Ay,

inf —G(r)= inf {32||A||%+OT.,(1v)}

mell(p,v) AeR%xdy

16 /29



Proof |

Recall:

Proof (one line):

inf
m€(p,v)

—G()

= inf
AeRdx xdy

{3201 411% + 0T, (1,v) }

6m) =4 [ I Iyl dn(a,) +8H [ drtay)

2

F

linear in

1
—b% < 4a® — 4ab equality holds iff a = Eb
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Proof |

inf —G(1)= inf {32||A||§+0TCA(M,U)}

mell(p,v) AR xdy

Recall:
2

6m) =4 [ I Iyl dn(a,) +8H [ drtay)

linear in

F

Proof (one line):
1
—b? < 4a® — 4ab equality holds iff a = Eb

j

F
1

2
= inf {32||A||2F — 32 <A, /xyT dn(z, y)>
F A

= —8H/xyT dr(z,y)

linear in

and infinf(---) :infinf(~--)

T A A 7
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Proof Il

inf —G(r)= inf {32||A||§+0TCA(M,V)}

m€l(p,v) AcRdz xdy

Recall:
2

6(r) =4 [ el oI dn(z,) +8H [ dntan

linear in

F

Observation (assume u, v are compactly supported):

G() is convex and Isc wrt weak topology

—> Bipolar theorem :
G(m) =sup{ [hdr —G*(h)}
o e

linear in 7
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Estimation of GW Cost

® Variational representation paves a way for establishing formal guarantees for
computation and estimation of GW cost
® Empirical distributions based on i.i.d. data:

ﬁn:%;(SXZ and I//\m=%26yj
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Estimation of GW Cost

® Variational representation paves a way for establishing formal guarantees for
computation and estimation of GW cost
® Empirical distributions based on i.i.d. data:

P SR
,un—ﬁizz;éxi and Vm—ajzz;éyj
Sample complexity (Zhang et al. "24; K-Wang "25)
For d, N d, > 4,
E [|GW3 5(fin, Um) — GW3 5 (1, v)|] S (n A m) T3 (log(n A m))H0=" b=
provided that u, v have finite (4g)-th moments with

dy A dy + 2d.d,
o Ady — 2
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Minimax lower bounds
Set D = GW3,

Minimax lower bounds (K-Wang '25)
For d; Ad, > 4,

inf sup E [|ﬁn,m — D(p, 1/)|]
Din,m (u,v)€P(B(0,1))x P(B(0,1))
e (n VAN m)_ﬁ (log(n A m))_ﬁl{dz/\dyx}
where the infimum is taken over all estimators of D(u,v) constructed from i.i.d.

samples from p and v of sizes n and m, respectively

2
= (nAm) %% is sharp (up to a log factor)
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Semidiscrete case

Consider when p is general but v is finitely discrete:
J
V= Z V;by,
j=1

Semidsicrete case (K-Wang '25)
If 1 has a finite (2¢)-moment with g € (2, 00),

2—q

[|GW22 (Hns Um) — GW22 ,U‘aV)H S (mAm)” W n'e

® Parametric rate if u has a finite 8-th moment
2—q
® n < is dominant if y is heavy tailed
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Limiting Law for Discrete GW

Statistical inference for GW?

Limiting law (Rioux-Goldfeld-K ’'24)

For finitely discrete p1 and v, there exist Gaussian processes G, and G, such that
VI (GW3 5 (fin, D) — GW3 5 (1, )

) . _
S inf inf  sup Gu(f+gr+@) +G.(f + 4. +9)

Furthermore, when GWs 5(u, v) = 0,

~ o~ d
\/EGWSQ(NM Vn) - \/§”Gﬂ||oo,7-_t

22/29



Proof Idea

e |dentify u & v with finite dimensional vectors and establish the derivative of
(u,v) = GW3 ,(, v) using the variational representation:

AeRdz Xdy

GW3,(pv) = Silp,v) + inf {32 A[l% +OTe,(k,v)},

depends only on
moments of marginals

where c4(z, y) = —4|z|*[ly|]* — 322" Ay

¢ By duality,

OT.,(u,v)=  sup @ u+9¢v
pit+i<ca(zi,y;)
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® One needs to find the derivative of the map

(w,v) ~  inf sup  B2AIF+ e p+yly
AER¥ XYY 4o <ca(winy;)
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® One needs to find the derivative of the map

(w,v) ~  inf sup  B2AIF+ e p+yly
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® The constraint set for the inner maximization depends on Al

24/29



® One needs to find the derivative of the map

(w,v) ~  inf sup  B2AIF+ e p+yly
AER¥ XYY 4o <ca(winy;)

® The constraint set for the inner maximization depends on Al

® |t turns out that the said map is not (Frechét) differentiable but directionally
Hadamard differentiable with nonlinear derivative, which is enough to invoke the
extended Delta method
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One needs to find the derivative of the map

(w,v) ~  inf sup  B2AIF+ e p+yly
AER¥ XYY 4o <ca(winy;)

The constraint set for the inner maximization depends on A!

It turns out that the said map is not (Frechét) differentiable but directionally
Hadamard differentiable with nonlinear derivative, which is enough to invoke the
extended Delta method

Used several techniques from optimization
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Estimating Weak Limits

® Naive bootstrap is inconsistent

Diimbgen '91; Fang-Santos '19
® Subsampling (m-out-of-n bootstrap with m < n) can be adapted to estimate the
weak limit, but it is computationally intensive
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Estimating Weak Limits

® Naive bootstrap is inconsistent

Diimbgen '91; Fang-Santos '19
® Subsampling (m-out-of-n bootstrap with m < n) can be adapted to estimate the
weak limit, but it is computationally intensive

® When GWy (i, v) = 0, the weak limit simplifies, and one can directly estimate it:

Algorithm 1 Sampling from Ly,

Given samples Xq,...,J X, from pg, construct frg .,
1: Let [f{']);:'l = spt(fipn).
2 Let by € RV and A e RVeNa—11%Na 10 gueh that Hn = {u eRY : Au< bn}.
3: Sample Z, ~ N(0, E,,, ) and solve ﬂsllpﬂg;ﬁ“ ZXu ~ Ly;: repeat Step 3 to generate new samples

® This method is consistent for estimating the null weak limit

25/29



Simulation Results

(1¥'9v"20"T)
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© Summary
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Summary

Gromov-Wasserstein Distance:

® Sample complexity upper bounds and minimax lower bounds for GW
® Limiting distributions for empirical GW
® Develop a method to estimate the null weak limit

® QOther results:

® Concentration inequalities
® Weak limits for semidiscrete GW and entropic GW

28/29



Thank You!
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