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Example: Empirical risk minimization

Regularized risk:

R(h) = E L(Y , h(X ))︸ ︷︷ ︸
loss function

+ ρ(h)︸︷︷︸
regularizer

, h∗ = argminh∈HR(h).

Given data (Xi ,Yi )
n
i=1, the regularized empirical risk:

Rn(h) = n−1
n∑

i=1

L(Yi , h(Xi )) + ρ(h), ĥ = argminh∈HRn(h).

SVM classification: Yi = {0, 1}, Xi : feature vectors.

Support vector regression (SVR): Yi output variable, Xi input

variable.

L: δ insensitive function, Lδ(x) = (|x | − δ)+.
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L(Yi , h(Xi )) + ρ(h), ĥ = argminh∈HRn(h).

LASSO, ridge, support vector regression, . . .

It is well known (cf. Devroye et al. 1996) that

0 ≤ R(ĥ)− R(h∗) ≤ 2Ψn, where Ψn = sup
h∈H

|Rn(h)− R(h)|.

The key issue in statistical learning: a tail probability bound for Ψn .
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Suprema of the Empirical Processes

For function g , denote Sn(g) =
∑n

i=1 g(Xi ).

We are interested in studying the tail probability

T (z) := P(Ψn ≥ z), where Ψn = sup
g∈A

|Sn(g)− ESn(g)|.

A huge literature when Xi are i.i.d., with various applications.
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Weak convergence of empirical processes

A huge literature on the weak convergence to Gaussian processes

{n−1/2[Sn(g)− ESn(g)], g ∈ G} ⇒ {Z (g), g ∈ G}, (1)

where Z (·) is a Gaussian process. For example

Radulovic, Dragan; Wegkamp, Marten (2018)

Herold Dehling, Thomas Mikosch, Magda Peligrad, Paul Doukhan,

......

Here we primarily focus on the tail probability T (z) := P(Ψn ≥ z).
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Mystical power of independence

Vapnik-Chervonenkis inequality

T (z) ≤ 8S(F , n)e−z2/(32n)

Consistency of learning processes

Nonasymptotic theory of the rate of

convergence of learning processes

Theory of controlling the generalization

ability of learning processes

Theory of constructing learning machines

– Vladimir N. Vapnika

a
The Nature of Statistical Learning Theory. 2000.
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Mystical power of independence
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Mystical power of independence

Example: If (Xi ) are i.i.d. random variables and the function class

A = {1(−∞,t], t ∈ R}, the Dvoretzky-Kiefer-Wolfowitz 1

-Massart2

inequality asserts that for all z ≥ 0,

T (z) ≤ 2e−2z2/n.

1
A. Dvoretzky et al. Asymptotic minimax character of the sample distribution function and of the classical multinomial

estimator. 1956.
2
P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. 1990.
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Time series application

For time series, dependence is the rule rather than the exception!

Predicting time series with support vector machines. 3 1402.

Application of support vector machines in financial time series forecasting 4.

1637.

Financial time series forecasting using support vector machines.5 2230.

Time series forecasting using a hybrid ARIMA and neural network model.6

5093.

. . .

Statistical theory being rarely studied! No theoretical guarantee.

3
K. R. Müller et al. International Conference on Artificial Neural Networks. 1997

4
FEH. Tay, L. Cao. Omega. 2001

5
K. Kim. Neurocomputing. 2003.

6
G. Peter Zhang. Neurocomputing. 2003.
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Dependent vs Independent

Xt =
∑

k≥1 akϵt−k , where ak = k−1.5, and ϵt ∼ t3.

(X ′
t)

n
t=1 are i.i.d and X ′

t ∼ X0.

Let Lδ(x) = (|x | − δ)+, the δ insensitive function
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Dependence

Our Primary Goal: to develop sharp or nearly sharp bounds for T (z) under

dependence, thus providing theoretical guarantee for statistical learning for

time dependent data.

My talk is based on a series of papers joint with Likai Chen, Yuefeng Han,

Danna Zhang and others.
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Dependence - Theory

Mixing?

B. Yu (1994), M. Mohri and A. Rostamizadeh (2010), M. Peligrad

(1992), Xiaohong Chen and Xiaotong Shen (1998), P. Doukhan

(1994), A. Kontorovich and A. Brockwell (2014), I. Steinwart and A.

Christmannetc (2009), etc.

Let F j
i be σ-field generated by Xl , i ≤ l ≤ j .

Strong mixing: α(s) = sup
t∈Z,A∈F∞

t+s ,B∈F t
−∞

|P(A ∩ B)− P(A)P(B)|.

β-mixing: β(s) = sup
t∈Z

E
B∈F t

−∞

(
sup

A∈F∞
t+s

|P(A|B)− P(A)|
)
.

ϕ-mixing : ϕ(s) = sup
t∈Z,A∈F∞

t+s ,B∈F t
−∞

|P(A|B)− P(A)|.
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Dependence - Theory

Mixing?

Limited. Some simple and widely used AR processes are not strong

mixing. 7

Xt = θXt−1 + ϵt ,

where 0 < θ < 1 and ϵt i.i.d Rademacher random variable.

Not handy Generally hard to verify. Difficulty in dealing with high

dimensional data set.

Less sharp. Existing results using mixing can be far from being sharp.

7
Donald W. K. Andrews. Nonstrong mixing autoregressive processes. 1984,

Boris Solomyak (1995) On the Random Series
∑

±λn (an Erdos Problem) Annals of Mathematics pp. 611-625
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Comparison example

Xi =
∑
k≥0

akϵi−k ,

where ϵt ∈ Lq i.i.d. with q > 2 and a0 = 1, ak ≍ k−α, α > 2 + 1/q.

Certain conditions on H, bounded loss function. For δ > n−K with

K = 1/4− (q + 1)/(2(α− 1)q), zδ = n1−K (log(δ − n−K )−1)1/2,

Mohri & Rostamizadeh (JMLR, 2010): P(n|Rn(ĥ)− R(ĥ)| ≥ Czδ) ≤ δ,

(2)

Chen & Wu: linear process (JMLR, 2018) P(n|Rn(ĥ)− R(ĥ)| ≥ Czδ) ≲ nz−qα
δ .

(3)

nz−qα
δ ≪ δ.

Example: let α = 4, q = 4. Then (2): O(n−1/24), (3): O(n−43/3).
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Dependence - Theory

A totally different approach: based on martingale decomposition

and a recent high-dimensional version Fuk-Nagaev type

inequality.8

Martingale Methods and Inequalities: Lai, Woodroofe, Chow,

Freedman’s inequality (1975); moment inequality for martingale:

Burkholder-Davis-Gundy Inequality; martingale inequality on Banach

space: Einmahl and Li (2008), Pinelis (1994).

Functional dependence measure (Wu, 2005).

8
V. Chernozhukov et al. Testing many moment inequalities. 2017.
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Time series (Xi) – Examples

Autoregressive moving average (ARMA)

(1−
p∑

j=1

θjB
j)Xi = Xi −

p∑
j=1

θjXi−j =

q∑
k=1

ϕkϵi−k ,

where θj and ϕk are real coefficients such that the root to the

equation 1−
∑p

j=1 θju
j = 0 are all outside the unit disk.

Fractional autoregressive integrated moving average (FARIMA) . 9

(1− B)d(Xi −
p∑

j=1

θjXi−j) =

q∑
k=1

ϕkϵi−k ,

where the index d ∈ (0, 1/2).

9
C. Granger and R. Joyeux. An introduction to long-memory time series models and fractional differencing. 1980.
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Dependence settings

Moving average (MA) process.

Xi =
∑
k≥0

akϵi−k ,

where

ϵi i.i.d. with mean 0 and µq := ∥ϵ0∥q < ∞, q ≥ 1.

ak = O(k−β), β > 1/q.

Properties:

q: heaviness of the tail; β: dependence strength.

If 1/2 < β < 1, q ≥ 2, long-range dependence (LRD);

if β > 1, short-range dependence (SRD).

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 18 / 50



Dependence settings

Example: Autoregressive conditional heteroskedasticity (ARCH)

Xt = σtϵt , σ
2
t = a0 +

q∑
k=1

akX
2
t−k , ak ≥ 0

Example: Xt =
∑

k≥0 akϵt−k . Then δt,q = ∥at(ϵ0 − ϵ′0)∥q.

Short-range dependent nonlinear process with weaker dependence

Short-range dependent nonlinear process with stronger dependence

Short-range dependent linear process

long-range dependent linear process
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Dependence settings
Non-linear time series:

Xt = F (ϵt , ϵt−1, . . .).
10 (4)

Let (ϵ′t) be an independent copy of (ϵt) and

Xt,{0} = F (ϵt , . . . , ϵ1, ϵ
′
0, ϵ−1, . . .). Functional dependence measure 11

δt,q = ∥Xt − Xt,{0}∥q. (5)

Example: Xt =
∑

k≥0 akϵt−k . Then δt,q = ∥at(ϵ0 − ϵ′0)∥q.

Short-range dependent nonlinear process with weaker dependence

Short-range dependent nonlinear process with stronger dependence

Short-range dependent linear process

long-range dependent linear process
10

M. Priestley. Non-linear and non-stationary time series analysis. 1988.
11

W. Wu. Nonlinear system theory: Another look at dependence. 2005.
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Definitions and Assumptions

For a function class A of bounded functions, define

NA(δ) := min
{
m : g1, . . . , gm ∈ A, s.t. sup

g∈A
min

1≤j≤m
|g − gj |∞ ≤ δ

}
,

where |g |∞ = supx |g(x)|. Let HA(δ) := log(NA(δ)).

(A) (Smoothness) For any g ∈ A, |g |, |g ′|, |g ′′| are uniformly bounded,

W.L.O.G. set the bound to be 1.

(A′) Assume supg∈A |g |∞ < ∞, f ′ϵ , f
′′
ϵ exist and

∫∞
−∞ |f ′ϵ (x)|dx ,

∫∞
−∞ |f ′′ϵ (x)|dx

are finite.

(B) (Algebraically Decaying Coefficients) For some γ, β > 0, |ak | ≤ γk−β holds

for all k ≥ 1.

(B ′) (Exponentially Decaying Coefficients) For some γ > 0, 0 < ρ < 1,

|ak | ≤ γρk holds for all k ≥ 0.
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Functional classes

(D) (Exponential Class) For some constants N,C , θ > 0, the covering

number NA(δ) ≤ Nexp(Cδ−θ) holds for all δ < 1.(Hölder/Sobolev

classes)

(D ′) (Algebraic Class) For some constants N, θ > 0, the covering number

NA(δ) ≤ Nδ−θ holds for all δ < 1. (VC classes, sparse neural

networks)

Common settings.

(cf. Kosorok (2006)12, van der Vaart and Wellner (1996)13.)

12
Introduction to Empirical Processes and Semiparametric Inference.

13
Weak Convergence and Empirical Processes.
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Examples

Exponential class:

F : bounded convex functions on a compact convex set C , Lipschitz

continuous with coefficient L.

G: {g : [0, 1] → [0, 1] with ∥g (m)∥L2 ≤ 1.}

NF (δ) ≤ exp{c1(1 + L)d/2δ−d/2}, NG(δ) ≤ exp{c2δ−1/m}.

Polynomial class:

F : f =
∑m

k=1 θkϕk(·), θ ∈ Θ a compact convex subset of Rm, and

(ϕk)
m
k=1 are real-valued basis functions.

NF (δ) ≤ c3δ
−m.

Sparse Neural Networks (to be discussed later).
W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 22 / 50



Short-range dependent nonlinear processes

Given Xt = F (ϵt , ϵt−1, . . .) and the function dependence measure

δt,q = ∥Xt − Xt,{0}∥q, define the dependence adjusted norm (d.a.n.)

∥X·∥q,α = sup
i≥0

(i + 1)α
∞∑
j=i

δj ,q, α ≥ 0, (6)

which plays a key role for asymptotics under dependence.

Assume EXt = 0. Let q ≥ 1. The d.a.n. ∥X·∥q,α ≥ ∥Xt∥q
The d.a.n. ∥X·∥q,α is non-decreasing in α, q.

If
∑∞

j=m δj ,q ≍ m−β, β > 0, then the d.a.n. ∥X·∥q,α = ∞ for all

α > β, and ∥X·∥q,β < ∞
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More properties of d.a.n.

It can happen ∥X·∥q,0 = ∞, which leads to long-range dependence

weak dependence, short-range dependence or short-memory:

∥X·∥q,0 =
∑∞

j=0 δj ,q < ∞

larger α with ∥X·∥q,α < ∞ means weaker dependence

The long run variance σ2
∞ =

∑∞
t=−∞ cov(X0,Xt) ≤ ∥X·∥22,0
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Short-range dependent nonlinear processes

For function g , denote Sn(g) =
∑n

i=1 g(Xi ). Recall the tail probability

T (z) := P(Ψn ≥ z), where Ψn = sup
g∈A

|Sn(g)− ESn(g)|.

Theorem

(weak dependence case with weaker dependence) Assume that all g ∈ A
satisfies |g ′|∞ ≤ 1. (i) If α > 1/2− 1/q, then

P(Ψn ≥ x) ≲
nℓq/2

xq
∥X·∥qq,α + exp(−cq,α

x2

n∥X·∥22,α
) (7)

for all x ≥
√
nℓ∥X·∥2,α + n1/qℓ3/2∥X·∥q,α, where ℓ = log(NA(x/n)).
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Short-range dependent nonlinear processes

Theorem

(Continued, weak dependence case with stronger dependence) (ii) If

0 < α < 1/2− 1/q, then

P(Ψn ≥ x) ≲
nq/2−αqℓq/2

xq
∥X·∥qq,α + exp(−cq,αx

2/(n∥X·∥22,α)) (8)

for all x ≥
√
nℓ∥X·∥2,α + n1/2−αℓ3/2∥X·∥q,α, where ℓ = log(NA(x/n)).
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Short-range dependent linear processes

Let q′ := q ∧ 2, c(n, q) = n1/q
′
if q ̸= 2 and n1/2log1/2(n) if q = 2.

Theorem 1

Assume (A)(or(A′)) and (B), β, q > 1 and qβ ≥ 2. Then we have

P
(
Ψn ≥ C1c(n, q) + z

)
≤ C2

n

zqβ︸ ︷︷ ︸
Polynomial term

+3exp
{
− z2

C3n
+ HA(

z

4n
)
}
+ 2exp

{
− zv

C4
+ HA(

z

4n
)
}

︸ ︷︷ ︸
Exponential term

,

where v = vq,β = (q′β − 1)(3q′β − 1)−1.
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Let q′ := q ∧ 2, c(n, q) = n1/q
′
if q ̸= 2 and n1/2log1/2(n) if q = 2.

Theorem 1

Assume (A)(or(A′)) and (B), β, q > 1 and qβ ≥ 2. Then we have

P
(
Ψn ≥ C1c(n, q) + z

)
≤ C2

n

zqβ︸ ︷︷ ︸
Polynomial term

+3exp
{
− z2

C3n

+ HA(
z

4n
)

}
+ 2exp

{
− zv

C4

+ HA(
z

4n
)

}
︸ ︷︷ ︸

Exponential term

,

where v = vq,β = (q′β − 1)(3q′β − 1)−1.
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Short-range dependent linear processes

Corollary 1

Assume (A) (or (A′)) and (B). Let β > 1 and q > 2. If either:

(i) assumption (D), and z ≥ cn1/2+α;

(ii) assumption (D ′) and z ≥ cn1/2log1/2(n), then

P
(
Ψn ≥ z

)
≤ C

n

zqβ
,

where α = max{θ/(θ + 2), (θ − v)/(θ + v)}/2 and C is a constant that

does not rely on n and z .

Recall the Dvoretzky-Kiefer-Wolfowitz inequality,

T (z) ≤ 2e−2z2/n.
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Short-range dependent linear processes

Coefficients decay exponentially: |ak | ≤ γρk .

Theorem 2

Let A = {g : R 7→ R, |g |∞ ≤ 1, |g ′|∞ ≤ 1}. Assume that the coefficients

of (Xi ) satisfy (B ′). Then for q′ = min{q, 2},

P(Ψn ≥ C1

√
n/(1− ρ) + z) ≤ C2

( e−C3(1−ρ)n

zq(1− ρ)q+q/q′
+ e−C4z2(1−ρ)2/n

)
.

ARMA: (1−
∑p

j=1 θjB
j)Xi =

∑q
k=1 ϕkϵi−k , some constants p, q ∈ N.

ρ = max{|u| : 1−
∑p

j=1 θju
−j = 0}
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Long-range dependent linear processes

Corollary 2

Assume (A) (or (A′)) and (B). Let q > 2, 1/2 < β < 1. If either

(i) condition (D) with 0 < α ≤ β − 1/2, θ < 2α/(β − 1/2− α) and

z ≥ cn3/2−β+α

(ii) condition (D ′) with α > 1/2, z ≥ cn3/2−β logα(n). Then

P
(
Ψn ≥ z

)
≤ C

n1+(1−β)q

zq
,

where C is some constant that does not rely on n.
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Long-range dependent linear processes

Theorem 3

Assume (A)(or(A′)) and (B), q > 2, 1/2 < β < 1. Then for all z > 0,

P
(
Ψn ≥ C1n

3/2−β + z
)
≤ C2

n1+(1−β)q

zq

(
1 +

[HA(z/4n) + log(n)]q

c̃q(n, β)

)
︸ ︷︷ ︸

Polynomial term

+3exp
(
− z2

C3n3−2β
+ HA(

z

4n
)
)

︸ ︷︷ ︸
Exponential term

,

where

c̃(n, β) =

n1/4−|3/4−β| if β ̸= 3/4,

n1/4/log(n) if β = 3/4.
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Sub-exponential innovations

Sub-exponential: E(ec0|ϵ0|) < ∞.

Theorem 4

Let G = {g : |g |∞ ≤ 1, |g ′|∞ ≤ 1}. Assume (B) and |fϵ|∞ ≤ f∗, f∗ > 0.

(a) for SRD case (β > 1), we have for all z > 0,

P(Ψn ≥ C1

√
n + z) ≤ 2e−C2z2/n,

(b) for LRD case (1/2 < β < 1), we have for all z > 0,

P(Ψn ≥ C3n
3/2−β + z) ≤ 2e−C4z2/n3−2β

.
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Tail behavior
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Kernel density estimation

Xi ∼ MA(∞) with a marginal density f . Kernel density estimator of f :

f̂n(x) =
1

n

n∑
j=1

Kb(x − Xj), Kb(·) = b−1K (·/b),

where the bandwidth b = bn with bn → 0 and nbn → ∞.

P
(
sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ z
)
.

non-asymptotic confidence bounds (Giné and Nickl (2010) AOS)

clustering problem (Rinaldo et al. (2012) JMLR)

forest density estimation (Liu et al. (2011) JMLR)
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Kernel density estimation

Assume (B), the kernel K is symmetric with support [−1, 1] and |K |, |K ′|,
|fϵ|, |f ′ϵ |, |f ′′ϵ | are all bounded by some finite constant L.

(a) In the SRD case with β > 1, q > 1, qβ ≥ 2, if nbn ≥ log(n) and

z ≥ c(n/bn)
1/2log1/2(n) for a sufficiently large c , then

P
(
sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ z
)
≤ Cµq

q

n

zqβ
,

(b) In the LRD case with 1/2 < β < 1, q > 2, if

z ≥ c max{n3/2−β, (n/bn)
1/2}logα(n) holds for some α > 1/2, c > 0,

then

P
(
sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ z
)
≤ Cµq

q

n1+(1−β)q

zq
,

where C is a constant that does not rely on n, z .

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 35 / 50



Empirical risk minimization

Consider (Xi ) satisfy the MA(∞) process, (ηi )i∈Z are i.i.d. random errors

independent of (ϵi ) in (Xi ), and

Yi = H0(Xi , ηi ),

where H0 is an unknown measurable function. Assume the loss function

0 ≤ L ≤ 1. Denote A = {L(x , y , h(x)) : h ∈ H}.

Assume (B), the density fϵ ∈ C2(R),
∫∞
−∞ |f ′ϵ (x)|+ |f ′′ϵ (x)|dx < ∞.

Under SRD conditions in Corollary 1, we have

P
(
Ψn ≥ Cqa∗µqc(n, q) + z

)
≤ C

n

zqβ
.

Under LRD conditions in Corollary 2, we have

P
(
Ψn ≥ z

)
≤ C

n1+(1−β)q

zq
.
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Gaussian approximation

Define the long-run covariance function

σgh :=
∑
k∈Z

Cov[g(Xi ), h(Xi+k)] and σg := σgg .

Let (Zg )g∈A be a gaussian field such that for any finite subset

g1, ..., gv ∈ A, v ≥ 1, the gaussian vector (Zg1 , . . . ,Zgv )
T has mean

zero and covariance matrix (σgigj )
v
i ,j=1. Recall Sn(g) =

∑n
i=1 g(Xi ).

Theorem 4

Assume (A), (B) with q > 4, β > 1. Let A be a class of functions g with

Eg(Xi ) = 0 and A0 = {σ−1/2
g g |g ∈ A}. Assume NA0(δ) ≤ Lδ−θ, where L, θ > 0

and there exists a constant c > 0 such that infg∈A σg ≥ c . Then we have GA

sup
u≥0

∣∣∣P( sup
g∈A

∣∣(nσg )
−1/2Sn(g)

∣∣ ≥ u
)
− P

(
sup
g∈A

|σ−1/2
g Zg | ≥ u

)∣∣∣∣ → 0.
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Sharpness

Empirical distribution functions:

Sn(t) = n[F̂n(t)− F (t)] =
n∑

i=1

[1Xi≤t − F (t)].

(A1) For Fϵ(u) = P(ϵ0 ≤ u), the cumulative distribution function of ϵ0,

assume that fϵ = F ′
ϵ and F ′′

ϵ are both bounded, W.L.O.G. set the

bound to be 1.
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Sharpness

Corollary 3

Assume (A1) and (B).

(i) (SRD) If β, q > 1, qβ ≥ 2, and if for some α > 1/2, c > 0, we have

z ≥ cn1/2logα(n), then

P
(
sup
t∈R

|Sn(t)| > C1c(n, q) + z

)
≤ C2

n

zqβ
,

(ii) (LRD) if 1/2 < β < 1 and q > 2, and if for some α > 1/2, c > 0, we

have z ≥ cn3/2−βlogα(n), then

P
(
sup
t∈R

|Sn(t)| > C1n
3/2−β + z

)
≤ C2

n1+(1−β)q

zq
.
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Precise rate

Under certain forms of tail probability of the innovations, we can have a

more refined result.

Corollary 4

Assume (A1)(B) and β, q > 1, qβ ≥ 2. Assume for any x > 1,

P(|ϵ0| > x) ≤ C log−r0(x)x−q,

some r0 > 1,C > 0. If z ≥
√
nlogα(n), α > 1/2, then

P
(
sup
t∈R

|Sn(t)| > z

)
≲

n

zqβlogr0(z)
,

where constant in ≲ only depends on β, q, γ, r0,C .
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Precise rate

What is the best decay rate we can possibly expected?

Theorem 6

Assume (A1)(B) with coefficients ak = (k ∨ 1)−β, k ≥ 0, and ϵ0 is

symmetric with the tail distribution

P(|ϵ0| ≥ x) ∼ log−r0(x)x−q, as x → ∞,

some r0 > 1. Let qβ > 2 and β > 1. If for some α > 1/2, there exists a

constant Γ > 0 such that for all z with
√
nlogα(n) ≤ z ≤ n/logΓ(n),

P (Sn(t) > z) = (1 + o(1))Ct,β,F
n

logr0(z)zqβ
, n → ∞.

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 41 / 50



Tail behavior

Xt =
∑

k≥1 akϵt−k , where ak = k−1.5, and ϵt ∼ t3 i.i.d.

Sn =
∑n

t=1(Lδ(Xt)− ELδ(Xt)) where Lδ(x) = (|x | − δ)+.

g(x) = P(Sn/(
√
nσ) ≥ x) and h(x) = 1− Φ(x), Φ(·) is distribution

for standard normal.
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Nonlinear Auto-regressive Processes

Consider the nonlinear auto-regressive process

Xt = H(Xt−1, . . . ,Xt−ℓ) + ϵt , (9)

where ϵt are i.i.d., and H(·) satisfies the Lipschitz condition

|H(u1, . . . , uℓ)− H(u′1, . . . , u
′
ℓ)| ≤

ℓ∑
i=1

hi |ui − u′i |, (10)

where Lipschitz constants h1, . . . , hℓ ≥ 0 are real coefficients. Assume

µp := E(|ϵt |p) < ∞ for some p > 0∑ℓ
i=1 hi < 1.

Then (9) is geometric moment contracting (GMC) with a stationary

solution with E(|Xt |p) < ∞.
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Nonlinear Auto-regressive Processes

Let 1 > ρ ≥
∑ℓ

i=1 hi be the root to the equation
∑ℓ

i=1 hiρ
−i = 1.

Theorem

Assume that function g satisfies |g |∞ ≤ m and is Lipschitz continuous

|g(x)− g(x ′)| ≤ L|x − x ′| for all x , x ′. Then there exists a constant K,

only depending on p and µp, such that

P(|Sn(g)− nEg(X1)| ≥ z) ≤ 2exp(−z2A2K

nm2
),A =

logmin(e, ρ−1)

logmax(e, L/m)

Sharp Azuma-Hoeffding inequality for nonlinear AR processes

Convenient to use, with explicit dependence on m, L, ρ

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 45 / 50



Nonlinear Auto-regressive Processes

We have the following Bernstein inequality.

Theorem

Assume that function g is Lipschitz |g(x)− g(x ′)| ≤ L|x − x ′| for all x , x ′,
and ϵt is sub-exponential: K := Eexp(c0|ϵt |) < ∞ for some c0 > 0. Then

there exists constants c1, c2, only depending on c0 and K, such that

P(|Sn(g)− nEg(X1)| ≥ z) ≤ 2exp(− z2(1− ρ)2

c1L2n + c2Lz(1− ρ)
).

Sharp Bernstein inequality for nonlinear AR processes

Convenient to use, with explicit dependence on L, ρ
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Non-parametric Estimation of Nonlinear AR Processes

We want to estimate H based on data (Xt)
n
t=1 from the nonlinear AR

Xt = H(Xt−1, . . . ,Xt−ℓ) + ϵt .

Let d be a lag and Yt = (Xt ,Xt−1, . . . ,Xt−d+1). We estimate H by

argming∈G

n∑
t=d+1

(Xt − g(Yt−1))
2

For practical implementation, consider those Yt−1 in a compact interval C :

argming∈GQn(g), where Qn(g) =
n∑

t=d+1

(Xt − g(Yt−1))
2ω(Yt−1)

and the weight function ω(y) = 1 if y ∈ C and ω(y) = 0 if dist(y ,C ) ≥ a

for some a > 0, for example ω(y) = (1− dist(y ,C ))+.
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The function class G

A neural network with L layers, Nl nodes at the lth layer, 1 ≤ l ≤ L, input

dim N0 = d , output dim NL+1 = 1, and rectifier linear unit (ReLU)

activation function σ(x) = x+, and

f (x) = WLσvL . . .W1σv1W0x

Let FM(L,N, s) be the sparse networks of such f with at most s non-zero

weights contained in [−M,M]. Then the entropy of the covering number

log2N (δ,F1(L,N, s), | · |∞) ≤ 4sLlog2(8δ
−1Lmax

l≤L
Nl) (11)

when C = [0, 1]d ; see Schmidt-Hieber (2020), Ohn and Kim (2022),

Beknazaryan and Sang (2022) among others.
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Non-parametric Estimation of Nonlinear AR Processes

Let G ⊂ F1(L,N, s) with |f |∞ ≤ c1 and Lipschitz constant ≤ c2.

Theorem

Assume that µp = E|εt |p < ∞, p > 2, and

z/
√
n ≥ K1sLlog(8Lmax

l
Nl) (12)

where constant K1 depends on c1, c2, p, µp and ρ. Then

P(max
g∈G

|Qn(g)− EQn(g)| ≥ z) ≤ K2
n1+p/2

zp
(logn)p/2 (13)
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Thank you!

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 50 / 50


	Background and previous work review
	Concentration inequalities for short- and long-range dependent processes
	Applications

