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Example: Empirical risk minimization

Regularized risk:

R(h) =EL(Y,h(X)) + p(h) , h*=argmin,cy R(h).
—_——— ~—~

loss function regularizer

Given data (X, Y;)"_;, the regularized empirical risk:

~

n~t Z (Yi, h(Xi)) + p(h), h=argming 4, Ry(h).
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Example: Empirical risk minimization

Regularized risk:
R(h) =EL(Y,h(X)) + p(h) , h*=argmin,cy R(h).
loss functic egularizer

Given data (X, Y;)"_;, the regularized empirical risk:

~

n~t Z (Yi, h(Xi)) + p(h), h=argming 4, Ry(h).

e SVM classification: Y; = {0,1}, X;: feature vectors.

@ Support vector regression (SVR): Y; output variable, X; input
variable.
L: § insensitive function, Ls(x) = (|x| — )+.
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loss function regularizer

Given data (X, Y;)"_;, the regularized empirical risk:
Ra(h) = n~1> " L(Y;, h(X)) + p(h), = argmingcy Ra(h).
i=1

o LASSO, ridge, support vector regression, ...
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Given data (X, Y;)"_;, the regularized empirical risk:
Ra(h) = n~1> " L(Y;, h(X)) + p(h), = argmingcy Ra(h).
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o LASSO, ridge, support vector regression, ...
o It is well known (cf. Devroye et al. 1996) that

0 < R(h) — R(h*) < 2V, where W, = sup |R,(h) — R(h)|.
heH
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Example: Empirical risk minimization
Regularized risk:

R(h)=EL(Y,h(X)) + p(h) , h*=argmin,4R(h).
—— ~~

loss function regularizer

Given data (X, Y;)"_,, the regularized empirical risk:
Ra(h) = n~1> " L(Y;, h(X)) + p(h), = argmingcy Ra(h).
i=1

o LASSO, ridge, support vector regression, ...
o It is well known (cf. Devroye et al. 1996) that
0 < R(h) — R(h*) < 2V, where W, = sup |R,(h) — R(h)|.
heH

@ The key issue in statistical learning: a tail probability bound for ¥, .
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Suprema of the Empirical Processes

For function g, denote S,(g) = >_i_; g(Xi).
We are interested in studying the tail probability

T(z) :=P(V, > z), where W, = sup |S,(g) — ESn(g)|.
geA

A huge literature when X; are i.i.d., with various applications.

Kernel density estimation Classification Regression function estimation

6 8
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Weak convergence of empirical processes

A huge literature on the weak convergence to Gaussian processes

{n2[S.(g) —ESa(g)]. & € G} = {Z(g),& € G}, (1)

where Z(+) is a Gaussian process. For example
e Radulovic, Dragan; Wegkamp, Marten (2018)
@ Herold Dehling, Thomas Mikosch, Magda Peligrad, Paul Doukhan,

Here we primarily focus on the tail probability T(z) := P(V, > z).
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Mystical power of independence

Vapnik-Chervonenkis inequality

T(z) < 8S(F, n)e_zz/(32”)
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Mystical power of independence
Vapnik-Chervonenkis inequality

T(z) < 8S(F, n)e_zz/(32”)

@ Consistency of learning processes

@ Nonasymptotic theory of the rate of

convergence of learning processes

@ Theory of controlling the generalization
ability of learning processes

@ Theory of constructing learning machines

— Vladimir N. Vapnik?

?The Nature of Statistical Learning Theory. 2000.
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Mystical power of independence

Foundations of
Machine Learning

Stéphane Boucheron X
ST
CONCENTRATION
INEQUALITIES

‘ A NONASYMPTOTIC

THEORY o
INDEPENDENCE

Mchryar Mohri,
Afshin Rostamizadeh,
OXFORD and Ameet Talwalkar

Copmapted usria
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Mystical power of independence

Example: If (X;) are i.i.d. random variables and the function class
A ={1_c g, t € R}, the Dvoretzky-Kiefer-Wolfowitz *
inequality asserts that for all z > 0,

T(z) < 2e72°/7,

A. Dvoretzky et al. Asymptotic minimax character of the sample distribution function and of the classical multinomial
estimator. 1956.

2 . . . PR .
P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. 1990.
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Time series application

For time series, dependence is the rule rather than the exception!

Predicting time series with support vector machines. 3 1402.

Application of support vector machines in financial time series forecasting *.
1637.

Financial time series forecasting using support vector machines.® 2230.

@ Time series forecasting using a hybrid ARIMA and neural network model.®
5093.

K. R. Miiller et al. International Conference on Artificial Neural Networks. 1997
FEH. Tay, L. Cao. Omega. 2001
K. Kim. Neurocomputing. 2003.

o o~ W

G. Peter Zhang. Neurocomputing. 2003.
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For time series, dependence is the rule rather than the exception!

Predicting time series with support vector machines. 3 1402.

Application of support vector machines in financial time series forecasting *.
1637.

Financial time series forecasting using support vector machines.® 2230.

@ Time series forecasting using a hybrid ARIMA and neural network model.®
5093.

o .

@ Statistical theory being rarely studied! No theoretical guarantee.
3K. R. Miiller et al. International Conference on Artificial Neural Networks. 1997

4FEH. Tay, L. Cao. Omega. 2001

5K4 Kim. Neurocomputing. 2003.

6

G. Peter Zhang. Neurocomputing. 2003.
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Dependent vs Independent

o X; = Zkzl ak€r_k, where ap = k=15, and ¢; ~ t3.
o (X{)f_; arei.id and X{ ~ Xp.
o Let Ls(x) = (|x| — )+, the ¢ insensitive function

| | |
-8 0 +&

& insensitive function
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Dependent vs Independent

Xi = Zkzl ak€r—_k, where ag = k~1° and ¢; ~ t3.

(X{)p_; are i.i.d and X{ ~ Xp.

Sn=>"1-1Ls(Xe), and S;, =377 Ls(XD).

g(x) =P(S, — ES, > /nx) and f(x) = P(S, — ES], > /nx).
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Dependent vs Independent

® X¢ =Y > k€r_k, where ay = k=1 and ¢ ~ t3.

o (X))1_, areiidand X! ~ Xo.

© Sp=3 11 Ls(Xe), and S, = 371 Ls(XY).

e g(x) =P(S, — ES, > v/nx) and f(x) = P(S], — ES], > \/nx).

2
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Dependence

Our Primary Goal: to develop sharp or nearly sharp bounds for T(z) under
dependence, thus providing theoretical guarantee for statistical learning for

time dependent data.

My talk is based on a series of papers joint with Likai Chen, Yuefeng Han,
Danna Zhang and others.
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Dependence - Theory

Mixing?

e B. Yu (1994), M. Mohri and A. Rostamizadeh (2010), M. Peligrad
(1992), Xiaohong Chen and Xiaotong Shen (1998), P. Doukhan
(1994), A. Kontorovich and A. Brockwell (2014), I. Steinwart and A.
Christmannetc (2009), etc.

o Let ]-',j be o-field generated by X, i <[ <.

e Strong mixing: a(s) = sup |[P(AN B) — P(A)P(B)|.
tEZ,AEF Y, BEFL

o B-mixing: B(s )—sup E ( sup |P(A|B) P(A)]).
BeFL o AEFT,

o ¢-mixing : ¢(s) = sup |P(A|B) — P(A)|.
tEZ,AEF Y, BEFE
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Dependence - Theory

Mixing?
o Limited. Some simple and widely used AR processes are not strong
mixing. ’

Xe = 0Xt—1+ €,

where 0 < 6 < 1 and ¢; i.i.d Rademacher random variable.

@ Not handy Generally hard to verify. Difficulty in dealing with high

dimensional data set.

@ Less sharp. Existing results using mixing can be far from being sharp.

7Donald W. K. Andrews. Nonstrong mixing autoregressive processes. 1984,
Boris Solomyak (1995) On the Random Series 3~ +\" (an Erdos Problem) Annals of Mathematics pp. 611-625
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Comparison example
Xi = ax€i i,
k>0

where ¢; € L9i.i.d. withg>2andag=1, ax <k * a>2+1/q.

o nz; 1 < 6.
o Example: let @ =4, g = 4. Then (2): O(n~1/2%), (3): O(n=*3/3).
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Comparison example
Xi = ax€i i,
k>0
where ¢; € L9i.i.d. withg>2andag=1, ax <k * a>2+1/q.

Certain conditions on H, bounded loss function. For § > n— % with
K=1/4—(q+1)/(2(a—1)q), zs = n*"K(log(6 — n=K)1)1/2,

Mohri & Rostamizadeh (JMLR, 2010): P(n|R,(h) — R(h)| > Cz5) < 4,
)

Chen & Wu: linear process (JMLR, 2018) P(n|R,(h) — R(h)| > Czs) < nz; 9.
3)

o nz; 1 < 6.
e Example: let a« =4, g =4. Then (2): o(n71/24)’ (3): O(n*43/3).
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Dependence - Theory
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Dependence - Theory

o A totally different approach: based on martingale decomposition
and a recent high-dimensional version Fuk-Nagaev type
inequality.®

o Martingale Methods and Inequalities: Lai, Woodroofe, Chow,
Freedman's inequality (1975); moment inequality for martingale:
Burkholder-Davis-Gundy Inequality; martingale inequality on Banach
space: Einmahl and Li (2008), Pinelis (1994).

e Functional dependence measure (Wu, 2005).

8 . . .
V. Chernozhukov et al. Testing many moment inequalities. 2017.
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Time series (X;) — Examples

o Autoregressive moving average (ARMA)

p

p q
1= 09BN =X =D 0:Xij = dxeii,
k=1

j=1 j=1
where 6; and ¢ are real coefficients such that the root to the
equation 1 — ZJ’-’Zl Hjuj = 0 are all outside the unit disk.

o Fractional autoregressive integrated moving average (FARIMA) . °

p

q
(1= B)(Xi =D _0:Xi) = > dueir,
k=1

j=1

where the index d € (0,1/2).

C. Granger and R. Joyeux. An introduction to long-memory time series models and fractional differencing. 1980.
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Dependence settings

Moving average (MA) process.
Xi = ax€ii,
k>0

where

@ ¢; i.i.d. with mean 0 and pq := [[eo]|qg < 00,9 > 1.

o ay = O(k™), B> 1/q.
Properties:

@ g: heaviness of the tail; 8: dependence strength.

e If1/2 < <1, g > 2, long-range dependence (LRD);
if 8> 1, short-range dependence (SRD).
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Dependence settings

@ Example: Autoregressive conditional heteroskedasticity (ARCH)

q
Xt:O'th, 0'1_2.:ao+ E akXt2—k7 akZO
k=1
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Dependence settings

@ Non-linear time series:
Xt = F(Et,ﬁt_]_,...).lo (4)

o Let (¢}) be an independent copy of (¢;) and

X g0y = F(ét, -, €1,€0,€-1,...). Functional dependence measure 1

5t,q = HXt - Xt,{O}HQ' (5)

IOM. Priestley. Non-linear and non-stationary time series analysis. 1988.
11
W. Wu. Nonlinear system theory: Another look at dependence. 2005.
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Dependence settings

@ Non-linear time series:
Xt = F(Et,ﬁt_]_,...).lo (4)

o Let (¢}) be an independent copy of (¢;) and

X g0y = F(ét, -, €1,€0,€-1,...). Functional dependence measure 1

5t,q = HXt - Xt,{O}HQ' (5)

o Example: Xi =} 4~qak€t—k- Then 0rq = [[at(eo — €p)llq-

@ Short-range dependent nonlinear process with weaker dependence
@ Short-range dependent nonlinear process with stronger dependence
@ Short-range dependent linear process

@ long-range dependent linear process

IOM. Priestley. Non-linear and non-stationary time series analysis. 1988.
11
W. Wu. Nonlinear system theory: Another look at dependence. 2005.
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Definitions and Assumptions

@ For a function class A of bounded functions, define

NA(6) := min {m (g1,.-.,8m €A, st. sup min |g — gl < 5},
geAlsSj<m

where [g]c = sup, [g(x)- Let Ha(5) := log(Na(5)).

(A) (Smoothness) For any g € A, |g],|g’|, |g"”| are uniformly bounded,
W.L.O.G. set the bound to be 1.

A’) Assume sup gloo <00, f/ " exist and [~ |f/(x)|dx, [~ |F/(x)|dx
geA €r'e oo I'e oo '€
are finite.

(B) (Algebraically Decaying Coefficients) For some 7, 3 > 0, |ax| < vk~# holds
for all k> 1.

(B") (Exponentially Decaying Coefficients) For some v > 0,0 < p < 1,
lak| < ~vp* holds for all k > 0.
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Functional classes

(D) (Exponential Class) For some constants N, C,6 > 0, the covering
number NV 4(0) < Nexp(C5~?) holds for all § < 1.(Hélder/Sobolev
classes)

(D) (Algebraic Class) For some constants N, 6 > 0, the covering number
NA(6) < N6~9 holds for all § < 1. (VC classes, sparse neural
networks)

Common settings.
(cf. Kosorok (2006)'2, van der Vaart and Wellner (1996)3.)

12 . - . .
Introduction to Empirical Processes and Semiparametric Inference.
13 -
Weak Convergence and Empirical Processes.
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Examples

Exponential class:

F: bounded convex functions on a compact convex set C, Lipschitz
continuous with coefficient L.

G: {g:10,1] — [0, 1] with [|g(™]|z, < 1.}

Nz(0) < exp{ci(1+ L)d/25*d/2}7 Ng(8) < exp{cz(g*l/m}.

Polynomial class:

F: f =34 10kdk(-), 0 € © a compact convex subset of R™, and
(¢k)j, are real-valued basis functions.

./\/]:(5) < 307",

Sparse Neural Networks (to be discussed later). |
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Short-range dependent nonlinear processes

Given X; = F(et, €1, ...) and the function dependence measure
dt.q = || Xe — X; {0y ||q. define the dependence adjusted norm (d.a.n.)

[Xligo = sup(i +1)° 3 81 >0 (6)

j=i
which plays a key role for asymptotics under dependence.
o Assume EX; =0. Let ¢ > 1. The d.a.n. || X||ga > [ Xtllq
e The d.a.n. ||X||g,a is non-decreasing in a, q.

o If Y32, 0j,4 < m—#, 8> 0, then the d.a.n. || X ||g.o = oo for all
a> B, and [|X][gp < o0
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More properties of d.a.n.

@ It can happen ||X/||4,0 = 00, which leads to long-range dependence
@ weak dependence, short-range dependence or short-memory:

1 Xllq0 = 22720 0.g <00
e larger o with || X|[g,a < 00 means weaker dependence

@ The long run variance 03, = > 32 cov(Xo, X:) < [|X |5,
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Short-range dependent nonlinear processes

For function g, denote S,(g) = >_i_; g(X;). Recall the tail probability

T(z) :=P(V, > z), where W, = sup |S,(g) — ES,(g)|.
geA

(weak dependence case with weaker dependence) Assume that all g € A
satisfies |g'|oc < 1. (i) If « >1/2—1/q, then

n¢a/2 x2

XG0 + exp(—cqa—rrm—) (7)
B 0l X 13,

<
P(V,>x) < e

for all x > \/nl|| X ||2. + n'/903/2|| X || 4.0, where £ = log(N.a(x/n)).
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Short-range dependent nonlinear processes

(Continued, weak dependence case with stronger dependence) (ii) If
0<a<1/2-1/q, then

IX 11,0 + exp(—cqax?/(nlX]54))  (8)

for all x > \/nf|| X ||2.a + n'/27%03/2|| X || .0, where £ =log(N4(x/n)).
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Short-range dependent linear processes

Let ' := g A2, c(n,q) =n"9 if g # 2 and n1/210g1/2(n) if g=2.

Assume (A)(or(A")) and (B), 8,9 > 1 and g > 2. Then we have
IP(\IJ,, > Cic(n,q) + z)

< G—  +3exp{ z +HACZ)Y + 2exp] — 2+ Ha(2))
n ol — 2 Z _Z Z

- 2 zaB © G3n A an B Cs Aan’
—l—

Polynomial term Exponential term

where v = v, 5= (¢'8—-1)(3¢/8—1)"1.
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Short-range dependent linear processes

Let ' := g A2, c(n,q) =n"9 if g # 2 and n1/210g1/2(n) if g=2.

Assume (A)(or(A")) and (B), 8,9 > 1 and g > 2. Then we have

P(W,, > Cic(n,q) + z)

z2 zv
@ } =+ 2exp{ — a },

Polynomial term Exponential term

n
CZZW + 3exp{ —

where v = v, 5= (¢'8—-1)(3¢/8—1)"1.
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Short-range dependent linear processes

Corollary 1

Assume (A) (or (A’)) and (B). Let 3> 1 and g > 2. If either:
(i) assumption (D), and z > cn'/?*;

(ii) assumption (D') and z > cn'/?log'/?(n), then

]P(W,, > z) < CZ%,

where a = max{60/(0 + 2),(0 — v)/(6 + v)}/2 and C is a constant that

does not rely on n and z.

Recall the Dvoretzky-Kiefer-Wolfowitz inequality,

T(z) < P
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Short-range dependent linear processes

Coefficients decay exponentially: |a,| < vpk.

Let A={g :R—R,|g|loo <1, |g'|cc < 1}. Assume that the coefficients
of (X;) satisfy (B"). Then for ¢’ = min{q, 2},

e—G(1—p)n

zq(]_ = p)‘H‘q/q/

PV, > Gvn/(1—p)+2) < CQ( n e—cuz(l,p)z/n)
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Short-range dependent linear processes

Coefficients decay exponentially: |a,| < vpk.

Let A={g :R—R,|g|loo <1, |g'|cc < 1}. Assume that the coefficients
of (Xj) satisfy (B’). Then for ¢' = min{q, 2},

e—G(1—p)n

zq(]_ = p)‘H‘q/q/

PV, > Gvn/(1—p)+2) < CQ( n e—cuz(l,p)z/n)

v

e ARMA: (1 — ZJ‘.’ZI GJBJ)X; :'Zzzl odrei—k, some constants p, g € N.
p=max{|u|:1— Zle fju~ =0}
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Long-range dependent linear processes

Assume (A) (or (A")) and (B). Let ¢ > 2, 1/2 < § < 1. If either

(i) condition (D) with0 < a < 8 —1/2, 6 <2a/(8—1/2— a) and
z> Cn3/2—,3+a

(i) condition (D') with a > 1/2, z > cn®/?>~Blog®(n). Then

n1+(17ﬁ)q
]P’(\IJ,, > z) <cl =

z4 ’

where C is some constant that does not rely on n.
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Long-range dependent linear processes

Assume (A)(or(A’)) and (B), g >2,1/2 < 3 < 1. Then for all z > 0,

nl+(1-B)q [Ha(z/4n) + log(n)]?
z49 (1 * &d(n, B) )

Polynomial term
2

zZ z
+3om( — g + Halg)

Exponential term

JP’(\U,, > Cn¥/2f 4 z) <G

where

n'/A=3/4=B1if g £ 3/4,

A= nt/4/log(n)  if B = 3/4.
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Sub-exponential innovations

Sub-exponential: E(e®/cl) < co.

Theorem 4

Let G = {g :|gloo < 1,|g"|cc < 1}. Assume (B) and |fi|oo < £, fi > 0.
(a) for SRD case (5 > 1), we have for all z > 0,

P(V, > Civ/n+ 2) < 2=/,
(b) for LRD case (1/2 < 8 < 1), we have for all z > 0,

P(V, > C3n¥/?F 4 7) < 2e= G2/
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Tail behavior

Innovation\Coefficient Poly

Finite moment Exp+Poly

Sub-exp Exp
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Kernel density estimation

Xi ~ MA(c0) with a marginal density f. Kernel density estimator of f:
1 n
() = =) Kp(x = X;), Kp(-)=b"1K(-/b
(x) n; b(x = Xj),  Kb() (-/b),

where the bandwidth b = b, with b, — 0 and nb, — oc.

P(sup n|fp(x) — Efy(x)]| > z).
xeR

@ non-asymptotic confidence bounds (Giné and Nickl (2010) AOS)
o clustering problem (Rinaldo et al. (2012) JMLR)
o forest density estimation (Liu et al. (2011) JMLR)
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Kernel density estimation

Assume (B), the kernel K is symmetric with support [—1,1] and |K|, |K|,
Ife], ||, |f| are all bounded by some finite constant L.

(a) In the SRD case with 8 > 1,9 > 1,953 > 2, if nb, > log(n) and
z > c(n/bn)?log!/?(n) for a sufficiently large ¢, then

xX€

~ ~ n
B q
]P’(su% n|fa(x) — Efq(x)| > Z) < Cr“qzqﬁ’

(b) In the LRD case with 1/2 < B < 1,9 > 2, if

z > cmax{n*?=P (n/b,)}/?}og®(n) holds for some o > 1/2, ¢ > 0,
then

~ ~ qn1+(17/j)q
— > <
P(igﬂg nlfa(x) — Efy(x)| > z) < Cugt——,

where C is a constant that does not rely on n, z.
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Empirical risk minimization

Consider (X;) satisfy the MA(c0) process, (7;)iez are i.i.d. random errors
independent of (¢;) in (X;), and

W - HO(Xl'ani)v
where Hp is an unknown measurable function. Assume the loss function

0 <L <1. Denote A= {L(x,y,h(x)): heH}.
Assume (B), the density f. € C(R), [*_|f/(x)| + |f'(x)|dx < oco.
Under SRD conditions in Corollary 1, we have

IP’(W,, > Cqaspige(n, q) —i—z) <C

n
Under LRD conditions in Corollary 2, we have

n1+(1— B)a

pv,22) <m0
z4
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Gaussian approximation

@ Define the long-run covariance function

ogh =Y _ Covlg(Xi), h(Xi)] and o := 0gg.
keZ
Let (Zg)geca be a gaussian field such that for any finite subset
81,8 € A, v > 1, the gaussian vector (Zg,,...,Zg )" has mean
zero and covariance matrix (0g,4)Y ;- Recall S,(g) = >, g(Xi).

Assume (A), (B) with g > 4, 8 > 1. Let A be a class of functions g with
Eg(X;) =0 and Ay = {0;1/2g|g € A}. Assume N4, (0) < L5=%, where L,6 > 0
and there exists a constant ¢ > 0 such that inf,c 4 05 > c. Then we have GA

— 0.

sup JP’( sup |(nag)_1/25,,(g)’ > u) —JP’( sup |og_1/22g| > u)
u>0 geA geA
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Sharpness

Empirical distribution functions:

Salt) = nlFa(e) — F(8)] = zum
(A1) For Fc(u) =P(eo < u), the cumulative distribution function of ¢p,

assume that . = F/ and F! are both bounded, W.L.O.G. set the
bound to be 1.
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Sharpness

Assume (A1) and (B).

(i) (SRD) If B, > 1, g8 > 2, and if for some « > 1/2, ¢ > 0, we have
z > cn'/?log®(n), then

n
P (suplSo(t) > Gue(rn.a) + 2) < Gool,

(i) (LRD)if1/2 < <1 and g > 2, and if for some o > 1/2, ¢ > 0, we
have z > cn®?Plog®(n), then

1+(1-B)q
P <sup\5,,(t)\ > Cyn3/27F8 +z> <ol — .
teR z9

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 39 /50



Precise rate

Under certain forms of tail probability of the innovations, we can have a

more refined result.

Corollary 4
Assume (A1)(B) and 8,9 > 1, g8 > 2. Assume for any x > 1,

P(|eo| > x) < Clog™"(x)x",
some rp > 1,C > 0. If z > /nlog™(n),a > 1/2, then

n
P Sn(t S ——
(fg£| n( )| > Z) ~ Zqﬁlogro(z)v

where constant in < only depends on 3, q,7, ro, C.
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Precise rate

What is the best decay rate we can possibly expected?
Theorem 6

Assume (A;)(B) with coefficients ax = (k vV 1)7%, k >0, and ¢ is
symmetric with the tail distribution

P(leg| > x) ~ log™™(x)x™9, as x — oo,

some rp > 1. Let g8 > 2 and 8 > 1. If for some « > 1/2, there exists a
constant I > 0 such that for all z with \/nlog®(n) < z < n/log" (n),

n

logro(z)zqﬁ7 n — o0.

P(Sn(t) >2z)=(1+0(1))Ces.F
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Tail behavior

o X; = Zkzl ak€r—k, where ag = k1% and e, ~ t3 i.i.d.

e S, = Z;’ZI(L(;(Xt) — ELs(X¢)) where Ls(x) = (|x] — d)+.

e g(x) =P(S,/(v/no) > x) and h(x) =1 — ®(x), ®(-) is distribution
for standard normal.

log [g(x)/h(x)]
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Tail behavior

o X; = Zkzl ak€r—k, where ay = k~1° and ¢ ~ t3 i.i.d.
o Sp=>7 1(Ls(Xe) — ELs(X¢)) where Ls(x) = (|x]| — 0)+.
e g(x) =P(S,/(v/no) > x) and h(x) =1 — ®(x), ®(-) is standard

normal c.d.f.

-35

log(g(x))
-55 4.5

-6.5
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Nonlinear Auto-regressive Processes

Consider the nonlinear auto-regressive process

Xt = H(Xt—17 e ,Xt—é) + €t, (9)

where ¢; are i.i.d., and H(-) satisfies the Lipschitz condition

l
|H(u, ... up) — H(uy, ..., up Zh]u,—u (10)
i=1
where Lipschitz constants hy,..., hy > 0 are real coefficients. Assume

o up = E(]e|P) < oo for some p > 0

o S hi<1.
Then (9) is geometric moment contracting (GMC) with a stationary
solution with E(|X;|P) < oo.
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Nonlinear Auto-regressive Processes

Let1>p> Zf;l h; be the root to the equation Zle hip~' = 1.

Assume that function g satisfies |g|.o < m and is Lipschitz continuous

lg(x) — g(x")| < L|x — X'| for all x,x". Then there exists a constant K,
only depending on p and p,, such that
Z2A’K, . logmin(e,pt)

P(|Sh(g) — nEg(X1)| > z) < 2exp(— ),A

nm? ~ logmax(e, L/m)

@ Sharp Azuma-Hoeffding inequality for nonlinear AR processes

@ Convenient to use, with explicit dependence on m, L, p

W Wu (University of Chicago) Concentration Inequality September, 2025, Vienna 45 /50



Nonlinear Auto-regressive Processes

We have the following Bernstein inequality.

Assume that function g is Lipschitz |g(x) — g(x")| < L|x — x| for all x,x’,
and €; is sub-exponential: K := Eexp(cp|et|) < oo for some ¢g > 0. Then
there exists constants ci, ¢, only depending on ¢y and K, such that

22 _ 2
IP)(‘Sn(g) - nEg(X1)| > Z) < QeXp(_clen +(1(:2L5()1 _ p))

@ Sharp Bernstein inequality for nonlinear AR processes

@ Convenient to use, with explicit dependence on L, p
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Non-parametric Estimation of Nonlinear AR Processes
We want to estimate H based on data (X;)7_; from the nonlinear AR
Xt = H(th]_, e ,Xt_g) + €.

Let d be a lag and Y; = (X¢, Xe—1, ..., Xi—g+1). We estimate H by

argmingeg Z (Xe — g(Ye_1))?
t=d+1

For practical implementation, consider those Y;_1 in a compact interval C:

n
argmingcgQn(g), where Q,(g) = Z (X: — g(Ye1))?w(Yeo1)
t=d+1
and the weight function w(y) =1if y € C and w(y) =0 if dist(y,C) > a
for some a > 0, for example w(y) = (1 — dist(y, C))™.
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The function class G

A neural network with L layers, N; nodes at the /th layer, 1 < | < L, input
dim Ny = d, output dim Ny 41 = 1, and rectifier linear unit (ReLU)
activation function o(x) = x*, and

f(X) = WLJVL e Wlavl W()X

Let Fpm(L, N, s) be the sparse networks of such f with at most s non-zero

weights contained in [—M, M]. Then the entropy of the covering number

10gaN (8, F1(L, N, 5), | - |oo) < 4sLlogy (80~ L max Nj) (11)

when C = [0,1]9; see Schmidt-Hieber (2020), Ohn and Kim (2022),
Beknazaryan and Sang (2022) among others.
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Non-parametric Estimation of Nonlinear AR Processes

Let G C Fi(L, N,s) with |f|s < c1 and Lipschitz constant < c.

Assume that ji, = Ele|P < 00, p > 2, and
z/v/n > Kisllog(8L max ) (12)

where constant Ky depends on c1, ¢, p, jtp and p. Then

1+p/2
T (logn)??  (13)

v

P(r;eaé(!(?n(g) —EQn(g)l =2 2) < K2 2P
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Thank you!

W Wu
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