# Concentration Inequalities for Statistical Learning for Time Dependent Data

Wei Biao Wu

Department of Statistics, University of Chicago

September, 2025, Vienna

Regularized risk:

$$R(h) = \mathbb{E}\underbrace{L(Y, h(X))}_{\text{loss function}} + \underbrace{\rho(h)}_{\text{regularizer}}, \quad h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h).$$

Given data  $(X_i, Y_i)_{i=1}^n$ , the regularized empirical risk:

$$R_n(h) = n^{-1} \sum_{i=1}^n L(Y_i, h(X_i)) + \rho(h), \quad \hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} R_n(h).$$

- SVM classification:  $Y_i = \{0, 1\}, X_i$ : feature vectors.
- Support vector regression (SVR):  $Y_i$  output variable,  $X_i$  input variable.
  - *L*:  $\delta$  insensitive function,  $L_{\delta}(x) = (|x| \delta)_{+}$ .

Regularized risk:

$$R(h) = \mathbb{E}\underbrace{L(Y, h(X))}_{\text{loss function}} + \underbrace{\rho(h)}_{\text{regularizer}}, \quad h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h).$$

Given data  $(X_i, Y_i)_{i=1}^n$ , the regularized empirical risk:

$$R_n(h) = n^{-1} \sum_{i=1}^n L(Y_i, h(X_i)) + \rho(h), \quad \hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} R_n(h).$$

- SVM classification:  $Y_i = \{0, 1\}, X_i$ : feature vectors.
- Support vector regression (SVR):  $Y_i$  output variable,  $X_i$  input variable.
  - *L*:  $\delta$  insensitive function,  $L_{\delta}(x) = (|x| \delta)_{+}$ .

Regularized risk:

$$R(h) = \mathbb{E}\underbrace{L(Y, h(X))}_{\text{loss function}} + \underbrace{\rho(h)}_{\text{regularizer}}, \quad h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h).$$

Given data  $(X_i, Y_i)_{i=1}^n$ , the regularized empirical risk:

$$R_n(h) = n^{-1} \sum_{i=1}^n L(Y_i, h(X_i)) + \rho(h), \quad \hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} R_n(h).$$

- LASSO, ridge, support vector regression, ...
- It is well known (cf. Devroye et al. 1996) that

$$0 \le R(\hat{h}) - R(h^*) \le 2\Psi_n$$
, where  $\Psi_n = \sup_{h \in \mathcal{H}} |R_n(h) - R(h)|$ .

• The key issue in statistical learning: a tail probability bound for  $\Psi_n$ .

Regularized risk:

$$R(h) = \mathbb{E}\underbrace{L(Y, h(X))}_{\text{loss function}} + \underbrace{\rho(h)}_{\text{regularizer}}, \quad h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h).$$

Given data  $(X_i, Y_i)_{i=1}^n$ , the regularized empirical risk:

$$R_n(h) = n^{-1} \sum_{i=1}^n L(Y_i, h(X_i)) + \rho(h), \quad \hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} R_n(h).$$

- LASSO, ridge, support vector regression, ...
- It is well known (cf. Devroye et al. 1996) that

$$0 \le R(\hat{h}) - R(h^*) \le 2\Psi_n$$
, where  $\Psi_n = \sup_{h \in \mathcal{H}} |R_n(h) - R(h)|$ .

ullet The key issue in statistical learning: a tail probability bound for  $\Psi_n$ .

Regularized risk:

$$R(h) = \mathbb{E}\underbrace{L(Y, h(X))}_{\text{loss function}} + \underbrace{\rho(h)}_{\text{regularizer}}, \quad h^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h).$$

Given data  $(X_i, Y_i)_{i=1}^n$ , the regularized empirical risk:

$$R_n(h) = n^{-1} \sum_{i=1}^n L(Y_i, h(X_i)) + \rho(h), \quad \hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} R_n(h).$$

- LASSO, ridge, support vector regression, ...
- It is well known (cf. Devroye et al. 1996) that

$$0 \le R(\hat{h}) - R(h^*) \le 2\Psi_n$$
, where  $\Psi_n = \sup_{h \in \mathcal{H}} |R_n(h) - R(h)|$ .

ullet The key issue in statistical learning: a tail probability bound for  $\Psi_n$ .

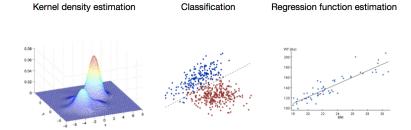
## Suprema of the Empirical Processes

For function g, denote  $S_n(g) = \sum_{i=1}^n g(X_i)$ .

We are interested in studying the tail probability

$$T(z) := \mathbb{P}(\Psi_n \ge z), \text{ where } \Psi_n = \sup_{g \in \mathcal{A}} |S_n(g) - \mathbb{E}S_n(g)|.$$

A huge literature when  $X_i$  are i.i.d., with various applications.



### Weak convergence of empirical processes

A huge literature on the weak convergence to Gaussian processes

$$\{n^{-1/2}[S_n(g)-\mathbb{E}S_n(g)],g\in\mathcal{G}\}\Rightarrow\{Z(g),g\in\mathcal{G}\},\tag{1}$$

where  $Z(\cdot)$  is a Gaussian process. For example

- Radulovic, Dragan; Wegkamp, Marten (2018)
- Herold Dehling, Thomas Mikosch, Magda Peligrad, Paul Doukhan,

.....

Here we primarily focus on the tail probability  $T(z) := \mathbb{P}(\Psi_n \geq z)$ .

Vapnik-Chervonenkis inequality

$$T(z) \le 8\mathcal{S}(\mathcal{F}, n)e^{-z^2/(32n)}$$

#### Vapnik-Chervonenkis inequality

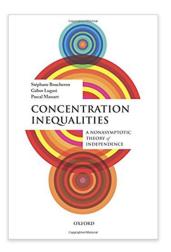
$$T(z) \le 8\mathcal{S}(\mathcal{F}, n)e^{-z^2/(32n)}$$

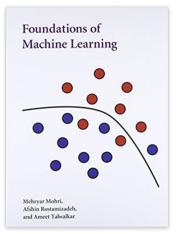


- Consistency of learning processes
- Nonasymptotic theory of the rate of convergence of learning processes
- Theory of controlling the generalization ability of learning processes
- Theory of constructing learning machines

- Vladimir N. Vapnika

<sup>&</sup>lt;sup>a</sup>The Nature of Statistical Learning Theory. 2000.





Example: If  $(X_i)$  are i.i.d. random variables and the function class  $\mathcal{A}=\{\mathbf{1}_{(-\infty,t]},t\in\mathbb{R}\}$ , the Dvoretzky-Kiefer-Wolfowitz  $^1$  inequality asserts that for all  $z\geq 0$ ,

$$T(z) \le 2e^{-2z^2/n}.$$

<sup>&</sup>lt;sup>1</sup> A. Dvoretzky et al. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. 1956.

 $<sup>^2\,\</sup>text{P.}$  Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. 1990.

Example: If  $(X_i)$  are i.i.d. random variables and the function class  $\mathcal{A}=\{\mathbf{1}_{(-\infty,t]}, t\in\mathbb{R}\}$ , the Dvoretzky-Kiefer-Wolfowitz  $^1$  -Massart $^2$  inequality asserts that for all  $z\geq 0$ ,

$$T(z) \le 2e^{-2z^2/n}.$$

<sup>&</sup>lt;sup>1</sup> A. Dvoretzky et al. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. 1956.

 $<sup>^2\,\</sup>text{P.}$  Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. 1990.

### Time series application

For time series, dependence is the rule rather than the exception!

- Predicting time series with support vector machines. <sup>3</sup> 1402.
- Application of support vector machines in financial time series forecasting <sup>4</sup>.
   1637.
- Financial time series forecasting using support vector machines.<sup>5</sup> 2230.
- Time series forecasting using a hybrid ARIMA and neural network model.<sup>6</sup>
   5093.
- ...
- Statistical theory being rarely studied! No theoretical guarantee.

<sup>&</sup>lt;sup>3</sup>K. R. Müller et al. International Conference on Artificial Neural Networks. 1997

<sup>&</sup>lt;sup>4</sup>FEH. Tay, L. Cao. Omega. 2001

<sup>&</sup>lt;sup>5</sup>K. Kim. Neurocomputing. 2003.

<sup>&</sup>lt;sup>6</sup>G. Peter Zhang. Neurocomputing. 2003.

### Time series application

For time series, dependence is the rule rather than the exception!

- Predicting time series with support vector machines. <sup>3</sup> 1402.
- Application of support vector machines in financial time series forecasting <sup>4</sup>.
   1637.
- Financial time series forecasting using support vector machines.<sup>5</sup> 2230.
- Time series forecasting using a hybrid ARIMA and neural network model.<sup>6</sup> 5093.
- ...
- Statistical theory being rarely studied! No theoretical guarantee.

<sup>&</sup>lt;sup>3</sup>K. R. Müller et al. International Conference on Artificial Neural Networks. 1997

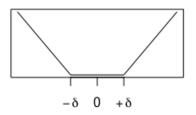
<sup>&</sup>lt;sup>4</sup>FEH. Tay, L. Cao. Omega. 2001

<sup>&</sup>lt;sup>5</sup> K. Kim. Neurocomputing. 2003.

<sup>&</sup>lt;sup>6</sup>G. Peter Zhang. Neurocomputing. 2003.

### Dependent vs Independent

- $X_t = \sum_{k>1} a_k \epsilon_{t-k}$ , where  $a_k = k^{-1.5}$ , and  $\epsilon_t \sim t_3$ .
- $(X_t')_{t=1}^n$  are i.i.d and  $X_t' \sim X_0$ .
- Let  $L_{\delta}(x) = (|x| \delta)_+$ , the  $\delta$  insensitive function



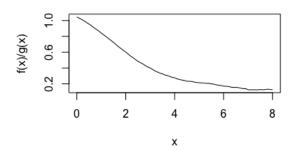
δ insensitive function

### Dependent vs Independent

- $X_t = \sum_{k \ge 1} a_k \epsilon_{t-k}$ , where  $a_k = k^{-1.5}$ , and  $\epsilon_t \sim t_3$ .
- $(X_t')_{t=1}^n$  are i.i.d and  $X_t' \sim X_0$ .
- $S_n = \sum_{t=1}^n L_{\delta}(X_t)$ , and  $S'_n = \sum_{t=1}^n L_{\delta}(X'_t)$ .
- $g(x) = \mathbb{P}(S_n \mathbb{E}S_n \ge \sqrt{n}x)$  and  $f(x) = \mathbb{P}(S'_n \mathbb{E}S'_n \ge \sqrt{n}x)$ .

### Dependent vs Independent

- $X_t = \sum_{k \ge 1} a_k \epsilon_{t-k}$ , where  $a_k = k^{-1.5}$ , and  $\epsilon_t \sim t_3$ .
- $(X_t')_{t=1}^n$  are i.i.d and  $X_t' \sim X_0$ .
- $S_n = \sum_{t=1}^n L_{\delta}(X_t)$ , and  $S'_n = \sum_{t=1}^n L_{\delta}(X'_t)$ .
- $g(x) = \mathbb{P}(S_n \mathbb{E}S_n \ge \sqrt{n}x)$  and  $f(x) = \mathbb{P}(S'_n \mathbb{E}S'_n \ge \sqrt{n}x)$ .



### Dependence

Our Primary Goal: to develop sharp or nearly sharp bounds for T(z) under dependence, thus providing theoretical guarantee for statistical learning for time dependent data.

My talk is based on a series of papers joint with Likai Chen, Yuefeng Han, Danna Zhang and others.

### Mixing?

- B. Yu (1994), M. Mohri and A. Rostamizadeh (2010), M. Peligrad (1992), Xiaohong Chen and Xiaotong Shen (1998), P. Doukhan (1994), A. Kontorovich and A. Brockwell (2014), I. Steinwart and A. Christmannetc (2009), etc.
- Let  $\mathcal{F}_{i}^{j}$  be  $\sigma$ -field generated by  $X_{I}$ ,  $i \leq I \leq j$ .
  - Strong mixing:  $\alpha(s) = \sup_{t \in \mathbb{Z}, A \in \mathcal{F}_{-\infty}^{\infty}, B \in \mathcal{F}_{-\infty}^{t}} |P(A \cap B) P(A)P(B)|.$
  - $\beta$ -mixing:  $\beta(s) = \sup_{t \in \mathbb{Z}} \mathbb{E}_{B \in \mathcal{F}_{-\infty}^t} \left( \sup_{A \in \mathcal{F}_{r+s}^\infty} |P(A|B) P(A)| \right).$
  - $\phi$ -mixing :  $\phi(s) = \sup_{t \in \mathbb{Z}, A \in \mathcal{F}_{t+s}^{\infty}, B \in \mathcal{F}_{-\infty}^{t}} |P(A|B) P(A)|.$

#### Mixing?

 Limited. Some simple and widely used AR processes are not strong mixing.

$$X_t = \theta X_{t-1} + \epsilon_t,$$

where  $0 < \theta < 1$  and  $\epsilon_t$  i.i.d Rademacher random variable.

- Not handy Generally hard to verify. Difficulty in dealing with high dimensional data set.
- Less sharp. Existing results using mixing can be far from being sharp.

 $<sup>^7</sup>$  Donald W. K. Andrews. Nonstrong mixing autoregressive processes. 1984, Boris Solomyak (1995) On the Random Series  $\sum \pm \lambda^n$  (an Erdos Problem) *Annals of Mathematics* pp. 611-625

### Comparison example

$$X_i = \sum_{k \geq 0} a_k \epsilon_{i-k},$$

where  $\epsilon_t \in \mathcal{L}^q$  i.i.d. with q > 2 and  $a_0 = 1$ ,  $a_k \asymp k^{-\alpha}$ ,  $\alpha > 2 + 1/q$ .

Certain conditions on H, bounded loss function. For  $\delta > n^{-K}$  with  $K = 1/4 - (q+1)/(2(\alpha-1)q), z_{\delta} = n^{1-K}(\log(\delta-n^{-K})^{-1})^{1/2},$ 

Mohri & Rostamizadeh (JMLR, 2010): 
$$\mathbb{P}(n|R_n(\hat{h}) - R(\hat{h})| \geq Cz_{\delta}) \leq \delta$$
,

Chen & Wu: linear process (JMLR, 2018) 
$$\mathbb{P}(n|R_n(\hat{h}) - R(\hat{h})| \ge Cz_\delta) \lesssim nz_\delta^{-q\alpha}$$
. (3)

- $nz_{\delta}^{-q\alpha} \ll \delta$ .
- Example: let  $\alpha = 4$ , q = 4. Then (2):  $O(n^{-1/24})$ , (3):  $O(n^{-43/3})$ .

### Comparison example

$$X_i = \sum_{k \geq 0} a_k \epsilon_{i-k},$$

where  $\epsilon_t \in \mathcal{L}^q$  i.i.d. with q > 2 and  $a_0 = 1$ ,  $a_k \approx k^{-\alpha}$ ,  $\alpha > 2 + 1/q$ .

Certain conditions on H, bounded loss function. For  $\delta > n^{-K}$  with

$$K = 1/4 - (q+1)/(2(\alpha-1)q), z_{\delta} = n^{1-K}(\log(\delta-n^{-K})^{-1})^{1/2},$$

Mohri & Rostamizadeh (JMLR, 2010): 
$$\mathbb{P}(n|R_n(\hat{h}) - R(\hat{h})| \geq Cz_{\delta}) \leq \delta$$
, (2)

Chen & Wu: linear process (JMLR, 2018)  $\mathbb{P}(n|R_n(\hat{h}) - R(\hat{h})| \ge Cz_\delta) \lesssim nz_\delta^{-q\alpha}$ . (3)

- $nz_{\delta}^{-q\alpha} \ll \delta$ .
- Example: let  $\alpha = 4$ , q = 4. Then (2):  $O(n^{-1/24})$ , (3):  $O(n^{-43/3})$ .

- A totally different approach: based on martingale decomposition and a recent high-dimensional version Fuk-Nagaev type inequality.<sup>8</sup>
- Martingale Methods and Inequalities: Lai, Woodroofe, Chow, Freedman's inequality (1975); moment inequality for martingale: Burkholder-Davis-Gundy Inequality; martingale inequality on Banach space: Einmahl and Li (2008), Pinelis (1994).
- Functional dependence measure (Wu, 2005).

- A totally different approach: based on martingale decomposition and a recent high-dimensional version Fuk-Nagaev type inequality.<sup>8</sup>
- Martingale Methods and Inequalities: Lai, Woodroofe, Chow, Freedman's inequality (1975); moment inequality for martingale: Burkholder-Davis-Gundy Inequality; martingale inequality on Banach space: Einmahl and Li (2008), Pinelis (1994).
- Functional dependence measure (Wu, 2005).

- A totally different approach: based on martingale decomposition and a recent high-dimensional version Fuk-Nagaev type inequality.<sup>8</sup>
- Martingale Methods and Inequalities: Lai, Woodroofe, Chow, Freedman's inequality (1975); moment inequality for martingale: Burkholder-Davis-Gundy Inequality; martingale inequality on Banach space: Einmahl and Li (2008), Pinelis (1994).
- Functional dependence measure (Wu, 2005).

### Time series $(X_i)$ – Examples

Autoregressive moving average (ARMA)

$$(1 - \sum_{j=1}^{p} \theta_j B^j) X_i = X_i - \sum_{j=1}^{p} \theta_j X_{i-j} = \sum_{k=1}^{q} \phi_k \epsilon_{i-k},$$

where  $\theta_j$  and  $\phi_k$  are real coefficients such that the root to the equation  $1 - \sum_{i=1}^{p} \theta_j u^i = 0$  are all outside the unit disk.

ullet Fractional autoregressive integrated moving average (FARIMA) .  $^9$ 

$$(1-B)^d(X_i-\sum_{j=1}^p\theta_jX_{i-j})=\sum_{k=1}^q\phi_k\epsilon_{i-k},$$

where the index  $d \in (0, 1/2)$ .

 $<sup>^{9}</sup>$ C. Granger and R. Joyeux. An introduction to long-memory time series models and fractional differencing. 1980.

Moving average (MA) process.

$$X_i = \sum_{k \ge 0} a_k \epsilon_{i-k},$$

#### where

- $\epsilon_i$  i.i.d. with mean 0 and  $\mu_q := \|\epsilon_0\|_q < \infty, q \ge 1$ .
- $a_k = O(k^{-\beta}), \ \beta > 1/q.$

#### Properties:

- q: heaviness of the tail;  $\beta$ : dependence strength.
- If  $1/2 < \beta < 1$ ,  $q \ge 2$ , long-range dependence (LRD); if  $\beta > 1$ , short-range dependence (SRD).

Example: Autoregressive conditional heteroskedasticity (ARCH)

$$X_t = \sigma_t \epsilon_t, \, \sigma_t^2 = a_0 + \sum_{k=1}^q a_k X_{t-k}^2, \quad a_k \ge 0$$

- Example:  $X_t = \sum_{k \geq 0} a_k \epsilon_{t-k}$ . Then  $\delta_{t,q} = \|a_t(\epsilon_0 \epsilon_0')\|_q$ .
- Short-range dependent nonlinear process with weaker dependence
- Short-range dependent nonlinear process with stronger dependence
- Short-range dependent linear process
- long-range dependent linear process

Non-linear time series:

$$X_t = F(\epsilon_t, \epsilon_{t-1}, \dots).^{10} \tag{4}$$

• Let  $(\epsilon'_t)$  be an independent copy of  $(\epsilon_t)$  and  $X_{t,\{0\}} = F(\epsilon_t, \dots, \epsilon_1, \epsilon'_0, \epsilon_{-1}, \dots)$ . Functional dependence measure <sup>11</sup>

$$\delta_{t,q} = \|X_t - X_{t,\{0\}}\|_q. \tag{5}$$

- Example:  $X_t = \sum_{k \geq 0} a_k \epsilon_{t-k}$ . Then  $\delta_{t,q} = ||a_t(\epsilon_0 \epsilon'_0)||_q$ .
- Short-range dependent nonlinear process with weaker dependence
- Short-range dependent nonlinear process with stronger dependence
- Short-range dependent linear process
- long-range dependent linear process

 $<sup>^{10}\,\</sup>mathrm{M}.$  Priestley. Non-linear and non-stationary time series analysis. 1988.

 $<sup>^{11}</sup>$ W. Wu. Nonlinear system theory: Another look at dependence. 2005.

Non-linear time series:

$$X_t = F(\epsilon_t, \epsilon_{t-1}, \dots)^{10} \tag{4}$$

• Let  $(\epsilon'_t)$  be an independent copy of  $(\epsilon_t)$  and  $X_{t,\{0\}} = F(\epsilon_t, \dots, \epsilon_1, \epsilon'_0, \epsilon_{-1}, \dots)$ . Functional dependence measure <sup>11</sup>

$$\delta_{t,q} = \|X_t - X_{t,\{0\}}\|_q. \tag{5}$$

- Example:  $X_t = \sum_{k \geq 0} a_k \epsilon_{t-k}$ . Then  $\delta_{t,q} = ||a_t(\epsilon_0 \epsilon'_0)||_q$ .
- Short-range dependent nonlinear process with weaker dependence
- Short-range dependent nonlinear process with stronger dependence
- Short-range dependent linear process
- long-range dependent linear process

 $<sup>^{10}{</sup>m M}.$  Priestley. Non-linear and non-stationary time series analysis. 1988.

 $<sup>^{11}</sup>$ W. Wu. Nonlinear system theory: Another look at dependence. 2005.

### **Definitions and Assumptions**

ullet For a function class  ${\mathcal A}$  of bounded functions, define

$$\mathcal{N}_{\mathcal{A}}(\delta) := \min\Big\{m: g_1, \dots, g_m \in \mathcal{A}, \text{ s.t. } \sup_{g \in \mathcal{A}} \min_{1 \leq j \leq m} |g - g_j|_{\infty} \leq \delta\Big\},$$

where  $|g|_{\infty} = \sup_{x} |g(x)|$ . Let  $H_{\mathcal{A}}(\delta) := \log(\mathcal{N}_{\mathcal{A}}(\delta))$ .

- (A) (Smoothness) For any  $g \in \mathcal{A}$ , |g|, |g'|, |g''| are uniformly bounded, W.L.O.G. set the bound to be 1.
- (A') Assume  $\sup_{g \in \mathcal{A}} |g|_{\infty} < \infty$ ,  $f'_{\epsilon}, f''_{\epsilon}$  exist and  $\int_{-\infty}^{\infty} |f'_{\epsilon}(x)| \mathrm{d}x$ ,  $\int_{-\infty}^{\infty} |f''_{\epsilon}(x)| \mathrm{d}x$  are finite.
- (B) (Algebraically Decaying Coefficients) For some  $\gamma, \beta > 0$ ,  $|a_k| \le \gamma k^{-\beta}$  holds for all  $k \ge 1$ .
- (B') (Exponentially Decaying Coefficients) For some  $\gamma > 0, 0 < \rho < 1,$   $|a_k| \le \gamma \rho^k$  holds for all  $k \ge 0$ .

#### Functional classes

- (*D*) (Exponential Class) For some constants  $N, C, \theta > 0$ , the covering number  $\mathcal{N}_{\mathcal{A}}(\delta) \leq N \exp(C\delta^{-\theta})$  holds for all  $\delta < 1$ .(Hölder/Sobolev classes)
- (D') (Algebraic Class) For some constants  $N, \theta > 0$ , the covering number  $\mathcal{N}_{\mathcal{A}}(\delta) \leq N\delta^{-\theta}$  holds for all  $\delta < 1$ . (VC classes, sparse neural networks)

Common settings.

(cf. Kosorok  $(2006)^{12}$ , van der Vaart and Wellner  $(1996)^{13}$ .)

<sup>&</sup>lt;sup>12</sup> Introduction to Empirical Processes and Semiparametric Inference.

<sup>&</sup>lt;sup>13</sup>Weak Convergence and Empirical Processes.

### **Examples**

#### Exponential class:

 $\mathcal{F}$ : bounded convex functions on a compact convex set C, Lipschitz continuous with coefficient L.

$$\mathcal{G}\colon \{g:[0,1]\to [0,1] \text{ with } \|g^{(m)}\|_{\mathcal{L}_2}\leq 1.\}$$

$$\mathcal{N}_{\mathcal{F}}(\delta) \leq \exp\{c_1(1+L)^{d/2}\delta^{-d/2}\}, \quad \mathcal{N}_{\mathcal{G}}(\delta) \leq \exp\{c_2\delta^{-1/m}\}.$$

#### Polynomial class:

 $\mathcal{F}$ :  $f = \sum_{k=1}^{m} \theta_k \phi_k(\cdot)$ ,  $\theta \in \Theta$  a compact convex subset of  $\mathbb{R}^m$ , and  $(\phi_k)_{k=1}^m$  are real-valued basis functions.

$$\mathcal{N}_{\mathcal{F}}(\delta) \leq c_3 \delta^{-m}$$
.

Sparse Neural Networks (to be discussed later).

### Short-range dependent nonlinear processes

Given  $X_t = F(\epsilon_t, \epsilon_{t-1}, \ldots)$  and the function dependence measure  $\delta_{t,q} = \|X_t - X_{t,\{0\}}\|_q$ , define the dependence adjusted norm (d.a.n.)

$$||X_{\cdot}||_{q,\alpha} = \sup_{i \ge 0} (i+1)^{\alpha} \sum_{j=i}^{\infty} \delta_{j,q}, \ \alpha \ge 0,$$
 (6)

which plays a key role for asymptotics under dependence.

- ullet Assume  $\mathbb{E} X_t = 0$ . Let  $q \geq 1$ . The d.a.n.  $\|X_t\|_{q,lpha} \geq \|X_t\|_q$
- The d.a.n.  $||X||_{q,\alpha}$  is non-decreasing in  $\alpha, q$ .
- If  $\sum_{j=m}^{\infty} \delta_{j,q} \asymp m^{-\beta}$ ,  $\beta > 0$ , then the d.a.n.  $\|X_{\cdot}\|_{q,\alpha} = \infty$  for all  $\alpha > \beta$ , and  $\|X_{\cdot}\|_{q,\beta} < \infty$

### More properties of d.a.n.

- It can happen  $||X||_{q,0} = \infty$ , which leads to long-range dependence
- weak dependence, short-range dependence or short-memory:

$$||X_{\cdot}||_{q,0} = \sum_{j=0}^{\infty} \delta_{j,q} < \infty$$

- larger  $\alpha$  with  $\|X_{\cdot}\|_{q,\alpha} < \infty$  means weaker dependence
- The long run variance  $\sigma_{\infty}^2 = \sum_{t=-\infty}^{\infty} cov(X_0, X_t) \leq \|X_t\|_{2,0}^2$

For function g, denote  $S_n(g) = \sum_{i=1}^n g(X_i)$ . Recall the tail probability

$$T(z) := \mathbb{P}(\Psi_n \geq z), \text{ where } \Psi_n = \sup_{g \in \mathcal{A}} |S_n(g) - \mathbb{E}S_n(g)|.$$

#### Theorem

(weak dependence case with weaker dependence) Assume that all  $g \in \mathcal{A}$  satisfies  $|g'|_{\infty} \leq 1$ . (i) If  $\alpha > 1/2 - 1/q$ , then

$$\mathbb{P}(\Psi_n \ge x) \lesssim \frac{n\ell^{q/2}}{x^q} \|X_{\cdot}\|_{q,\alpha}^q + \exp(-c_{q,\alpha} \frac{x^2}{n\|X_{\cdot}\|_{2,\alpha}^2}) \tag{7}$$

for all  $x \ge \sqrt{n\ell} \|X_{\cdot}\|_{2,\alpha} + n^{1/q} \ell^{3/2} \|X_{\cdot}\|_{q,\alpha}$ , where  $\ell = \log(\mathcal{N}_{\mathcal{A}}(x/n))$ .

#### Theorem

(Continued, weak dependence case with stronger dependence) (ii) If  $0 < \alpha < 1/2 - 1/q$ , then

$$\mathbb{P}(\Psi_n \ge x) \lesssim \frac{n^{q/2 - \alpha q} \ell^{q/2}}{x^q} \|X_{\cdot}\|_{q,\alpha}^q + \exp(-c_{q,\alpha} x^2 / (n\|X_{\cdot}\|_{2,\alpha}^2))$$
 (8)

for all 
$$x \ge \sqrt{n\ell} \|X_{\cdot}\|_{2,\alpha} + n^{1/2-\alpha} \ell^{3/2} \|X_{\cdot}\|_{q,\alpha}$$
, where  $\ell = \log(\mathcal{N}_{\mathcal{A}}(x/n))$ .

Let 
$$q' := q \wedge 2$$
,  $c(n, q) = n^{1/q'}$  if  $q \neq 2$  and  $n^{1/2} \log^{1/2}(n)$  if  $q = 2$ .

#### Theorem 1

Assume (A)(or(A')) and (B),  $\beta$ , q > 1 and  $q\beta \ge 2$ . Then we have

$$\mathbb{P}\Big(\Psi_n \geq C_1 c(n,q) + z\Big)$$

$$\leq C_2 \frac{n}{z^{q\beta}} + 3 \exp\left\{-\frac{z^2}{C_3 n} + H_{\mathcal{A}}\left(\frac{z}{4 n}\right)\right\} + 2 \exp\left\{-\frac{z^{\nu}}{C_4} + H_{\mathcal{A}}\left(\frac{z}{4 n}\right)\right\},\,$$

Polynomial term

Exponential term

where  $v = v_{q,\beta} = (q'\beta - 1)(3q'\beta - 1)^{-1}$ .

Let 
$$q' := q \wedge 2$$
,  $c(n, q) = n^{1/q'}$  if  $q \neq 2$  and  $n^{1/2} \log^{1/2}(n)$  if  $q = 2$ .

#### Theorem 1

Assume (A)(or(A')) and (B),  $\beta$ , q > 1 and  $q\beta \ge 2$ . Then we have

$$\mathbb{P}\Big(\Psi_n \geq C_1 c(n,q) + z\Big)$$

$$\leq C_2 \frac{n}{z^{q\beta}} + 3\exp\{-\frac{z^2}{C_3 n}\}$$

 $\left.\right\} + 2\exp\left\{-\frac{z^{\nu}}{C_{\lambda}}\right\}$ 

Polynomial term

Exponential term

where 
$$v = v_{q,\beta} = (q'\beta - 1)(3q'\beta - 1)^{-1}$$
.

### Corollary 1

Assume (A) (or (A')) and (B). Let  $\beta > 1$  and q > 2. If either:

- (i) assumption (D), and  $z \ge cn^{1/2+\alpha}$ ;
- (ii) assumption (D') and  $z \ge c n^{1/2} \log^{1/2}(n)$ , then

$$\mathbb{P}\Big(\Psi_n \geq z\Big) \leq C\frac{n}{z^{q\beta}},$$

where  $\alpha = \max\{\theta/(\theta+2), (\theta-v)/(\theta+v)\}/2$  and C is a constant that does not rely on n and z.

Recall the Dvoretzky-Kiefer-Wolfowitz inequality,

$$T(z) \le 2e^{-2z^2/n}.$$

Coefficients decay **exponentially**:  $|a_k| \leq \gamma \rho^k$ .

#### Theorem 2

Let  $\mathcal{A} = \{g : \mathbb{R} \mapsto \mathbb{R}, |g|_{\infty} \leq 1, |g'|_{\infty} \leq 1\}$ . Assume that the coefficients of  $(X_i)$  satisfy (B'). Then for  $q' = \min\{q, 2\}$ ,

$$\mathbb{P}(\Psi_n \geq C_1 \sqrt{n}/(1-\rho) + z) \leq C_2 \left(\frac{e^{-C_3(1-\rho)n}}{z^q(1-\rho)^{q+q/q'}} + e^{-C_4 z^2(1-\rho)^2/n}\right).$$

• ARMA:  $(1 - \sum_{j=1}^p \theta_j B^j) X_i = \sum_{k=1}^q \phi_k \epsilon_{i-k}$ , some constants  $p, q \in \mathbb{N}$ .  $\rho = \max\{|u| : 1 - \sum_{i=1}^p \theta_j u^{-i} = 0\}$ 

Coefficients decay **exponentially**:  $|a_k| \leq \gamma \rho^k$ .

#### Theorem 2

Let  $\mathcal{A} = \{g : \mathbb{R} \mapsto \mathbb{R}, |g|_{\infty} \leq 1, |g'|_{\infty} \leq 1\}$ . Assume that the coefficients of  $(X_i)$  satisfy (B'). Then for  $q' = \min\{q, 2\}$ ,

$$\mathbb{P}(\Psi_n \geq C_1 \sqrt{n}/(1-\rho) + z) \leq C_2 \left(\frac{e^{-C_3(1-\rho)n}}{z^q(1-\rho)^{q+q/q'}} + e^{-C_4 z^2(1-\rho)^2/n}\right).$$

• ARMA:  $(1 - \sum_{j=1}^p \theta_j B^j) X_i = \sum_{k=1}^q \phi_k \epsilon_{i-k}$ , some constants  $p, q \in \mathbb{N}$ .  $\rho = \max\{|u| : 1 - \sum_{j=1}^p \theta_j u^{-j} = 0\}$ 

### Corollary 2

Assume (A) (or (A')) and (B). Let q > 2,  $1/2 < \beta < 1$ . If either

- (i) condition (D) with 0 <  $\alpha \le \beta 1/2$ ,  $\theta < 2\alpha/(\beta 1/2 \alpha)$  and  $z > cn^{3/2-\beta+\alpha}$
- (ii) condition (D') with  $\alpha > 1/2$ ,  $z \ge cn^{3/2-\beta}\log^{\alpha}(n)$ . Then

$$\mathbb{P}\Big(\Psi_n \geq z\Big) \leq C \frac{n^{1+(1-\beta)q}}{z^q},$$

where C is some constant that does not rely on n.

#### Theorem 3

Assume (A)(or(A')) and (B), q > 2,  $1/2 < \beta < 1$ . Then for all z > 0,

$$\mathbb{P}\Big(\Psi_n \geq C_1 n^{3/2-\beta} + z\Big) \leq C_2 \frac{n^{1+(1-\beta)q}}{z^q} \Big(1 + \frac{[H_{\mathcal{A}}(z/4n) + \log(n)]^q}{\tilde{c}^q(n,\beta)}\Big)$$

Polynomial term

$$+3\exp\left(-\frac{z^2}{C_3n^{3-2\beta}}+H_A(\frac{z}{4n})\right),$$

Exponential term

where

$$\tilde{c}(n,\beta) = \begin{cases} n^{1/4-|3/4-\beta|} & \text{if } \beta \neq 3/4, \\ n^{1/4}/\log(n) & \text{if } \beta = 3/4. \end{cases}$$

# Sub-exponential innovations

Sub-exponential:  $\mathbb{E}(e^{c_0|\epsilon_0|}) < \infty$ .

#### Theorem 4

Let  $\mathcal{G}=\{g:|g|_\infty\leq 1,|g'|_\infty\leq 1\}.$  Assume (B) and  $|f_\epsilon|_\infty\leq f_*,\,f_*>0.$ 

(a) for SRD case ( $\beta > 1$ ), we have for all z > 0,

$$\mathbb{P}(\Psi_n \geq C_1 \sqrt{n} + z) \leq 2e^{-C_2 z^2/n},$$

(b) for LRD case  $(1/2 < \beta < 1)$ , we have for all z > 0,

$$\mathbb{P}(\Psi_n \ge C_3 n^{3/2-\beta} + z) \le 2e^{-C_4 z^2/n^{3-2\beta}}$$

### Tail behavior

| Innovation\Coefficient | Poly     | Exp |
|------------------------|----------|-----|
| Finite moment          | Exp+Poly | Ехр |
| Sub-exp                | Ехр      | Ехр |



### Kernel density estimation

 $X_i \sim \mathsf{MA}(\infty)$  with a marginal density f. Kernel density estimator of f:

$$\hat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n K_b(x - X_i), \quad K_b(\cdot) = b^{-1} K(\cdot/b),$$

where the bandwidth  $b = b_n$  with  $b_n \to 0$  and  $nb_n \to \infty$ .

$$\mathbb{P}\Big(\sup_{x\in\mathbb{R}} n|\hat{f}_n(x) - \mathbb{E}\hat{f}_n(x)| \geq z\Big).$$

- non-asymptotic confidence bounds (Giné and Nickl (2010) AOS)
- clustering problem (Rinaldo et al. (2012) JMLR)
- forest density estimation (Liu et al. (2011) JMLR)

## Kernel density estimation

Assume (B), the kernel K is symmetric with support [-1,1] and |K|,|K'|,  $|f_{\epsilon}|,|f''_{\epsilon}|$ , are all bounded by some finite constant L.

(a) In the SRD case with  $\beta>1, q>1, q\beta\geq 2$ , if  $nb_n\geq \log(n)$  and  $z\geq c(n/b_n)^{1/2}\log^{1/2}(n)$  for a sufficiently large c, then

$$\mathbb{P}\Big(\sup_{x\in\mathbb{R}} n|\hat{f}_n(x) - \mathbb{E}\hat{f}_n(x)| \ge z\Big) \le C\mu_q^q \frac{n}{z^{q\beta}},$$

(b) In the LRD case with  $1/2 < \beta < 1$ , q > 2, if  $z \ge c \max\{n^{3/2-\beta}, (n/b_n)^{1/2}\}\log^{\alpha}(n)$  holds for some  $\alpha > 1/2$ , c > 0, then

$$\mathbb{P}\Big(\sup_{x\in\mathbb{R}} n|\hat{f}_n(x) - \mathbb{E}\hat{f}_n(x)| \geq z\Big) \leq C\mu_q^q \frac{n^{1+(1-\beta)q}}{z^q},$$

where C is a constant that does not rely on n, z.

# Empirical risk minimization

Consider  $(X_i)$  satisfy the MA $(\infty)$  process,  $(\eta_i)_{i\in\mathbb{Z}}$  are i.i.d. random errors independent of  $(\epsilon_i)$  in  $(X_i)$ , and

$$Y_i = H_0(X_i, \eta_i),$$

where  $H_0$  is an unknown measurable function. Assume the loss function  $0 \le L \le 1$ . Denote  $\mathcal{A} = \{L(x, y, h(x)) : h \in \mathcal{H}\}$ .

Assume (B), the density  $f_{\epsilon} \in \mathcal{C}^2(\mathbb{R})$ ,  $\int_{-\infty}^{\infty} |f'_{\epsilon}(x)| + |f''_{\epsilon}(x)| dx < \infty$ . Under SRD conditions in Corollary 1, we have

$$\mathbb{P}\Big(\Psi_n \geq C_q a_* \mu_q c(n,q) + z\Big) \leq C \frac{n}{z^{q\beta}}.$$

Under LRD conditions in Corollary 2, we have

$$\mathbb{P}\Big(\Psi_n \geq z\Big) \leq C \frac{n^{1+(1-\beta)q}}{z^q}.$$

# Gaussian approximation

• Define the long-run covariance function

$$\sigma_{gh} := \sum_{k \in \mathbb{Z}} \operatorname{Cov}[g(X_i), h(X_{i+k})] \text{ and } \sigma_g := \sigma_{gg}.$$

Let  $(Z_g)_{g \in \mathcal{A}}$  be a gaussian field such that for any finite subset  $g_1, ..., g_v \in \mathcal{A}, \ v \geq 1$ , the gaussian vector  $(Z_{g_1}, ..., Z_{g_v})^T$  has mean zero and covariance matrix  $(\sigma_{g_ig_j})_{i,j=1}^v$ . Recall  $S_n(g) = \sum_{i=1}^n g(X_i)$ .

#### Theorem 4

Assume (A), (B) with q>4,  $\beta>1$ . Let  $\mathcal A$  be a class of functions g with  $\mathbb E g(X_i)=0$  and  $\mathcal A_0=\{\sigma_g^{-1/2}g|g\in\mathcal A\}$ . Assume  $\mathcal N_{\mathcal A_0}(\delta)\leq L\delta^{-\theta},$  where  $L,\theta>0$  and there exists a constant c>0 such that  $\inf_{g\in\mathcal A}\sigma_g\geq c$ . Then we have GA

$$\sup_{u\geq 0} \left| \mathbb{P} \bigg( \sup_{g\in \mathcal{A}} \left| (n\sigma_g)^{-1/2} S_n(g) \right| \geq u \bigg) - \mathbb{P} \bigg( \sup_{g\in \mathcal{A}} |\sigma_g^{-1/2} Z_g| \geq u \bigg) \right| \to 0.$$

### Sharpness

Empirical distribution functions:

$$S_n(t) = n[\hat{F}_n(t) - F(t)] = \sum_{i=1}^n [\mathbf{1}_{X_i \le t} - F(t)].$$

 $(A_1)$  For  $F_{\epsilon}(u)=\mathbb{P}(\epsilon_0\leq u)$ , the cumulative distribution function of  $\epsilon_0$ , assume that  $f_{\epsilon}=F'_{\epsilon}$  and  $F''_{\epsilon}$  are both bounded, W.L.O.G. set the bound to be 1.

## Sharpness

### Corollary 3

Assume  $(A_1)$  and (B).

(i) (SRD) If  $\beta, q > 1$ ,  $q\beta \ge 2$ , and if for some  $\alpha > 1/2$ , c > 0, we have  $z \ge c n^{1/2} \log^{\alpha}(n)$ , then

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}|S_n(t)|>C_1c(n,q)+z\right)\leq C_2\frac{n}{z^{q\beta}},$$

(ii) (LRD) if  $1/2 < \beta < 1$  and q > 2, and if for some  $\alpha > 1/2$ , c > 0, we have  $z \ge c n^{3/2-\beta} \log^{\alpha}(n)$ , then

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}|S_n(t)|>C_1n^{3/2-\beta}+z\right)\leq C_2\frac{n^{1+(1-\beta)q}}{z^q}.$$

#### Precise rate

Under certain forms of tail probability of the innovations, we can have a more refined result.

### Corollary 4

Assume  $(A_1)(B)$  and  $\beta, q > 1, q\beta \ge 2$ . Assume for any x > 1,

$$\mathbb{P}(|\epsilon_0| > x) \le C \log^{-r_0}(x) x^{-q},$$

some  $r_0 > 1, C > 0$ . If  $z \ge \sqrt{n} \log^{\alpha}(n), \alpha > 1/2$ , then

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}|S_n(t)|>z\right)\lesssim \frac{n}{z^{q\beta}\log^{r_0}(z)},$$

where constant in  $\lesssim$  only depends on  $\beta$ , q,  $\gamma$ ,  $r_0$ , C.

### Precise rate

What is the best decay rate we can possibly expected?

#### Theorem 6

Assume  $(A_1)(B)$  with coefficients  $a_k = (k \vee 1)^{-\beta}, \ k \geq 0$ , and  $\epsilon_0$  is symmetric with the tail distribution

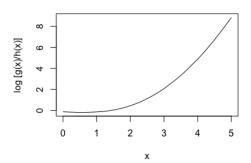
$$\mathbb{P}(|\epsilon_0| \ge x) \sim \log^{-r_0}(x)x^{-q}$$
, as  $x \to \infty$ ,

some  $r_0 > 1$ . Let  $q\beta > 2$  and  $\beta > 1$ . If for some  $\alpha > 1/2$ , there exists a constant  $\Gamma > 0$  such that for all z with  $\sqrt{n}\log^{\alpha}(n) \le z \le n/\log^{\Gamma}(n)$ ,

$$\mathbb{P}\left(S_n(t)>z\right)=(1+o(1))C_{t,\beta,F}\frac{n}{\log^{r_0}(z)z^{q\beta}},\quad n\to\infty.$$

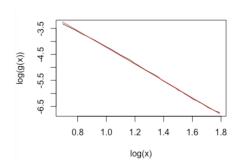
### Tail behavior

- $X_t = \sum_{k>1} a_k \epsilon_{t-k}$ , where  $a_k = k^{-1.5}$ , and  $\epsilon_t \sim t_3$  i.i.d.
- $S_n = \sum_{t=1}^n (L_\delta(X_t) \mathbb{E}L_\delta(X_t))$  where  $L_\delta(x) = (|x| \delta)_+$ .
- $g(x) = \mathbb{P}(S_n/(\sqrt{n}\sigma) \ge x)$  and  $h(x) = 1 \Phi(x)$ ,  $\Phi(\cdot)$  is distribution for standard normal.



### Tail behavior

- $X_t = \sum_{k>1} a_k \epsilon_{t-k}$ , where  $a_k = k^{-1.5}$ , and  $\epsilon_t \sim t_3$  i.i.d.
- $S_n = \sum_{t=1}^n (L_\delta(X_t) \mathbb{E}L_\delta(X_t))$  where  $L_\delta(x) = (|x| \delta)_+$ .
- $g(x) = \mathbb{P}(S_n/(\sqrt{n}\sigma) \ge x)$  and  $h(x) = 1 \Phi(x)$ ,  $\Phi(\cdot)$  is standard normal c.d.f.



## Nonlinear Auto-regressive Processes

Consider the nonlinear auto-regressive process

$$X_t = H(X_{t-1}, \dots, X_{t-\ell}) + \epsilon_t, \tag{9}$$

where  $\epsilon_t$  are i.i.d., and  $H(\cdot)$  satisfies the Lipschitz condition

$$|H(u_1,\ldots,u_\ell)-H(u'_1,\ldots,u'_\ell)| \leq \sum_{i=1}^\ell h_i |u_i-u'_i|,$$
 (10)

where Lipschitz constants  $h_1,\ldots,h_\ell\geq 0$  are real coefficients. Assume

- $\mu_p := \mathbb{E}(|\epsilon_t|^p) < \infty$  for some p > 0
- $\sum_{i=1}^{\ell} h_i < 1$ .

Then (9) is geometric moment contracting (GMC) with a stationary solution with  $\mathbb{E}(|X_t|^p) < \infty$ .

# Nonlinear Auto-regressive Processes

Let  $1 > \rho \ge \sum_{i=1}^{\ell} h_i$  be the root to the equation  $\sum_{i=1}^{\ell} h_i \rho^{-i} = 1$ .

#### Theorem

Assume that function g satisfies  $|g|_{\infty} \le m$  and is Lipschitz continuous  $|g(x) - g(x')| \le L|x - x'|$  for all x, x'. Then there exists a constant K, only depending on p and  $\mu_p$ , such that

$$\mathbb{P}(|S_n(g) - n\mathbb{E}g(X_1)| \ge z) \le 2\exp(-\frac{z^2A^2K}{nm^2}), A = \frac{\log\min(e, \rho^{-1})}{\log\max(e, L/m)}$$

- Sharp Azuma-Hoeffding inequality for nonlinear AR processes
- Convenient to use, with explicit dependence on  $m, L, \rho$

### Nonlinear Auto-regressive Processes

We have the following Bernstein inequality.

#### Theorem

Assume that function g is Lipschitz  $|g(x) - g(x')| \le L|x - x'|$  for all x, x', and  $\epsilon_t$  is sub-exponential:  $K := \mathbb{E} \exp(c_0|\epsilon_t|) < \infty$  for some  $c_0 > 0$ . Then there exists constants  $c_1, c_2$ , only depending on  $c_0$  and K, such that

$$\mathbb{P}(|S_n(g) - n\mathbb{E}g(X_1)| \ge z) \le 2\exp(-\frac{z^2(1-\rho)^2}{c_1L^2n + c_2Lz(1-\rho)}).$$

- Sharp Bernstein inequality for nonlinear AR processes
- ullet Convenient to use, with explicit dependence on  $L, \rho$

### Non-parametric Estimation of Nonlinear AR Processes

We want to estimate H based on data  $(X_t)_{t=1}^n$  from the nonlinear AR

$$X_t = H(X_{t-1}, \ldots, X_{t-\ell}) + \epsilon_t.$$

Let d be a lag and  $Y_t = (X_t, X_{t-1}, \dots, X_{t-d+1})$ . We estimate H by

$$\operatorname{argmin}_{g \in \mathcal{G}} \sum_{t=d+1}^{n} (X_t - g(Y_{t-1}))^2$$

For practical implementation, consider those  $Y_{t-1}$  in a compact interval C:

$$\operatorname{argmin}_{g \in \mathcal{G}} Q_n(g), \text{ where } Q_n(g) = \sum_{t=d+1}^n (X_t - g(Y_{t-1}))^2 \omega(Y_{t-1})$$

and the weight function  $\omega(y)=1$  if  $y\in C$  and  $\omega(y)=0$  if  $dist(y,C)\geq a$  for some a>0, for example  $\omega(y)=(1-dist(y,C))^+$ .

### The function class $\mathcal G$

A neural network with L layers,  $N_l$  nodes at the lth layer,  $1 \le l \le L$ , input dim  $N_0 = d$ , output dim  $N_{L+1} = 1$ , and rectifier linear unit (ReLU) activation function  $\sigma(x) = x^+$ , and

$$f(x) = W_L \sigma_{v_L} \dots W_1 \sigma_{v_1} W_0 x$$

Let  $\mathcal{F}_M(L, N, s)$  be the sparse networks of such f with at most s non-zero weights contained in [-M, M]. Then the entropy of the covering number

$$\log_2 \mathcal{N}(\delta, \mathcal{F}_1(L, N, s), |\cdot|_{\infty}) \le 4sL \log_2 (8\delta^{-1}L \max_{I \le L} N_I)$$
 (11)

when  $C = [0, 1]^d$ ; see Schmidt-Hieber (2020), Ohn and Kim (2022), Beknazaryan and Sang (2022) among others.

### Non-parametric Estimation of Nonlinear AR Processes

Let  $\mathcal{G} \subset \mathcal{F}_1(L,N,s)$  with  $|f|_{\infty} \leq c_1$  and Lipschitz constant  $\leq c_2$ .

#### Theorem

Assume that  $\mu_p = \mathbb{E}|\varepsilon_t|^p < \infty$ , p > 2, and

$$z/\sqrt{n} \ge K_1 s L \log(8L \max_{l} N_l) \tag{12}$$

where constant  $K_1$  depends on  $c_1, c_2, p, \mu_p$  and  $\rho$ . Then

$$\mathbb{P}(\max_{g\in\mathcal{G}}|Q_n(g)-\mathbb{E}Q_n(g)|\geq z)\leq K_2\frac{n^{1+\rho/2}}{z^{\rho}}(\log n)^{\rho/2}$$
(13)

# Thank you!