Monitoring for a Phase Transition in a Time Series of Wigner Matrices

Nina Dörnemann ¹

joint work with Piotr Kokoszka ², Tim Kutta ¹, Sunmin Lee ²

 $^{1}\mbox{Department}$ of Mathematics, Aarhus University, Denmark $^{2}\mbox{Department}$ of Statistics, Colorado State University, Fort Collins, USA

Wigner matrices

Wigner matrices

Definition

A Wigner matrix $\mathbf{W}_n \in \mathbb{R}^{n \times n}$ is a random matrix whose entries $(w_{ij})_{1 \leq i,j \leq n}$ are independent, up to the symmetry constraint $w_{ii} = w_{ii}$, and satisfy the conditions

$$\mathbb{E}[w_{ij}] = 0, \quad \mathbb{E}[w_{ij}^2] = \sigma^2 + \delta_{ij}c, \quad \max_{1 \le i,j \le n} \mathbb{E}|w_{ij}|^p \le c_p,$$

Wigner matrices

Definition

A Wigner matrix $\mathbf{W}_n \in \mathbb{R}^{n \times n}$ is a random matrix whose entries $(w_{ij})_{1 \leq i,j \leq n}$ are independent, up to the symmetry constraint $w_{ij} = w_{ji}$, and satisfy the conditions

$$\mathbb{E}[w_{ij}] = 0, \quad \mathbb{E}[w_{ij}^2] = \sigma^2 + \delta_{ij}c, \quad \max_{1 \le i, j \le n} \mathbb{E}|w_{ij}|^p \le c_p,$$

Example: Gaussian Orthogonal Ensemble

Let $\mathbf{G} \in \mathbb{R}^{n \times n}$ be a random matrix with i.i.d. $\mathcal{N}(0,1)$ entries. Then.

$$\mathbf{W}_n = rac{1}{\sqrt{2}}(\mathbf{G} + \mathbf{G}^{ op})$$

is a Wigner matrix with $\sigma^2 = 1, c = 1$.

Signal detection in deformed Wigner matrices

When is it possible to detect a rank-one signal in an additively deformed Wigner matrix \mathbf{M}_n ?

$$\mathbf{M}_n = s\mathbf{x}\mathbf{x}^{ op} + rac{1}{\sqrt{n}}\mathbf{W}_n$$

$$(s > 0, \|\mathbf{x}\| = 1)$$

Signal detection in deformed Wigner matrices

When is it possible to detect a rank-one signal in an additively deformed Wigner matrix \mathbf{M}_n ?

$$\mathbf{M}_n = s\mathbf{x}\mathbf{x}^\top + \frac{1}{\sqrt{n}}\mathbf{W}_n$$

$$(s>0, \|\mathbf{x}\|=1)$$

Answers from random matrix theory (as $n \to \infty$):

	$s < \sigma$	$s>\sigma$
Eigenvalue	$\lambda_1(\mathbf{M}_n) \stackrel{P}{\to} 2\sigma$	$\lambda_1(\mathbf{M}_n) \stackrel{P}{\to} s + \sigma^2 s^{-1}$
Eigenvector	$\langle \mathbf{u}_1(\mathbf{M}_n), \mathbf{x} \rangle^2 \stackrel{P}{\to} 0$	$\langle \mathbf{u}_1(\mathbf{M}_n), \mathbf{x} \rangle^2 \stackrel{P}{\rightarrow} 1 - \sigma^2 s^{-2}$

(Capitaine et. al., 2009; Lee and Schnelli, 2015; Pizzo et al., 2013)

Signal detection in deformed Wigner matrices (Summary)

When is it possible to detect a rank-one signal in an additively deformed Wigner matrix \mathbf{M}_n ?

$$\mathbf{M}_n = \mathbf{s} \mathbf{x} \mathbf{x}^\top + \frac{1}{\sqrt{n}} \mathbf{W}_n$$

$$(s > 0, \|\mathbf{x}\| = 1 \text{ possibly random})$$

- subcritical: no information about the signal
- supercritical: both the maximum eigenvalue and its corresponding eigenvector contain information about the signal

Sequential change-point detection

Sequential change point detection

There exist mulitple paradigms

"Chu, C. S. J., Stinchcombe, M. and White, H. (1996). Monitoring structural change. Econometrica 64 1045-1065."

Idea: Let's say we want to monitor for a change in the mean.

▶ Training sample $X_1, X_2, ..., X_m$ with constant mean

Sequential change point detection

There exist mulitple paradigms

"Chu, C. S. J., Stinchcombe, M. and White, H. (1996). Monitoring structural change. Econometrica 64 1045-1065."

Idea: Let's say we want to monitor for a change in the mean.

- ▶ Training sample $X_1, X_2, ..., X_m$ with constant mean
- ▶ Then, data arrive sequentially $X_{m+1}, X_{m+2}, ...$

Sequential change point detection

There exist mulitple paradigms

"Chu, C. S. J., Stinchcombe, M. and White, H. (1996). Monitoring structural change. Econometrica 64 1045-1065."

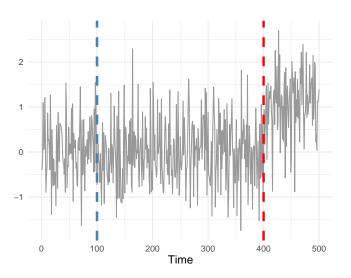
Idea: Let's say we want to monitor for a change in the mean.

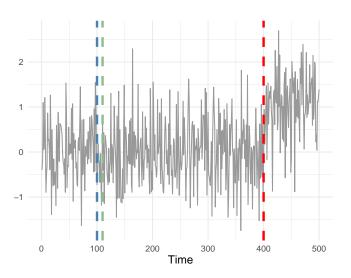
- ▶ Training sample $X_1, X_2, ..., X_m$ with constant mean
- ▶ Then, data arrive sequentially $X_{m+1}, X_{m+2}, ...$
- At each point k, use X_1, \ldots, X_{m+k} to decide between

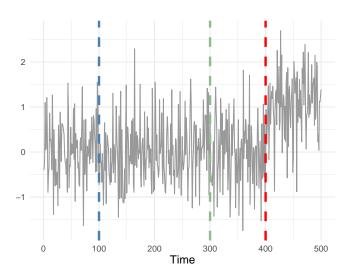
$$H_0: \mathbb{E} X_1 = \mathbb{E} X_2 = \dots$$

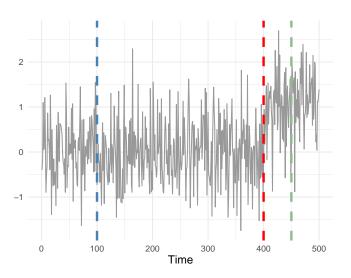
$$H_1: \exists k^*: \mathbb{E}X_1 = \mathbb{E}X_2 = \ldots = \mathbb{E}X_{m+k^*} \neq \mathbb{E}X_{m+k^*+1} = \ldots,$$

where k^* is a unknown change point.









Statistical problem

Statistical Model for Regime Transition Detection

Model Setup:

- ightharpoonup Data: $\mathbf{M}_t = s_t \mathbf{x}_{n,t} \mathbf{x}_{n,t}^{\top} + \frac{1}{\sqrt{n}} \mathbf{W}_{n,t}$
- $ightharpoonup \mathbb{P}^{(1)}$: subcritical regime, initial state, support $[0,\sigma)$
- $ightharpoonup \mathbb{P}^{(2)}$: supercritical regime, support (σ,∞)
- $ightharpoonup s_t \sim \mathbb{P}^{(1)} ext{ or } s_t \sim \mathbb{P}^{(2)}$

Statistical Model for Regime Transition Detection

Model Setup:

- ightharpoonup Data: $\mathbf{M}_t = s_t \mathbf{x}_{n,t} \mathbf{x}_{n,t}^{\top} + \frac{1}{\sqrt{n}} \mathbf{W}_{n,t}$
- $ightharpoonup \mathbb{P}^{(1)}$: subcritical regime, initial state, support $[0,\sigma)$
- $ightharpoonup \mathbb{P}^{(2)}$: supercritical regime, support (σ,∞)
- $ightharpoonup s_t \sim \mathbb{P}^{(1)} ext{ or } s_t \sim \mathbb{P}^{(2)}$

Training Sample:

- $ightharpoonup s_1,\ldots,s_m \sim \mathbb{P}^{(1)}$
- ▶ Signal in $\mathbf{M}_1, \dots, \mathbf{M}_m$ cannot be detected

Statistical Model for Regime Transition Detection

Model Setup:

- ightharpoonup Data: $\mathbf{M}_t = s_t \mathbf{x}_{n,t} \mathbf{x}_{n,t}^{\top} + \frac{1}{\sqrt{n}} \mathbf{W}_{n,t}$
- $ightharpoonup \mathbb{P}^{(1)}$: subcritical regime, initial state, support $[0,\sigma)$
- $ightharpoonup \mathbb{P}^{(2)}$: supercritical regime, support (σ, ∞)
- $ightharpoonup s_t \sim \mathbb{P}^{(1)} ext{ or } s_t \sim \mathbb{P}^{(2)}$

Training Sample:

- $ightharpoonup s_1,\ldots,s_m \sim \mathbb{P}^{(1)}$
- \triangleright Signal in $\mathbf{M}_1, \dots, \mathbf{M}_m$ cannot be detected

Monitoring Phase:

 \blacktriangleright At each time point k, use $\mathbf{M}_1, \ldots, \mathbf{M}_{m+k}$ to decide whether

where k^* is a unknown change point.

Methodological Criteria

Goal: A test for the emergence of a supercritical signal in a weakly dependent time series of high-dimensional matrices

Methodological Criteria

Goal: A test for the emergence of a supercritical signal in a weakly dependent time series of high-dimensional matrices

Some details:

Asymptotics in $n, m \to \infty$ (dimension of the matrix and training sample size, respectively):

$$m \asymp n^{\theta}$$

for some constant $\theta \in (0, \infty)$

- ► For any n, the sequence $(\mathbf{W}_{n,t}, \mathbf{x}_{n,t}, s_t)_{t \in \mathbb{Z}}$ is strictly stationary.
- ▶ The triangular array $(\mathbf{W}_{n,t}, \mathbf{x}_{n,t}, s_t)_{t \in \mathbb{Z}}$ is ϕ -mixing.

Methodological Criteria

Goal: A test for the emergence of a supercritical signal in a weakly dependent time series of high-dimensional matrices

Some details:

Asymptotics in $n, m \to \infty$ (dimension of the matrix and training sample size, respectively):

$$m \asymp n^{\theta}$$

for some constant $\theta \in (0, \infty)$

- ► For any n, the sequence $(\mathbf{W}_{n,t}, \mathbf{x}_{n,t}, s_t)_{t \in \mathbb{Z}}$ is strictly stationary.
- ► The triangular array $(\mathbf{W}_{n,t}, \mathbf{x}_{n,t}, s_t)_{t \in \mathbb{Z}}$ is ϕ -mixing.

Two aims:

- Approximation of a nominal level $\alpha \in (0,1)$ under H_0
- Power consistency under H₁

Test statistic

▶ If λ_t is the largest eigenvalue of \mathbf{M}_t under H_0 , then

$$n^{2/3}(\lambda_t - 2\sigma) o egin{cases} TW_t & : & ext{if } s_t \sim \mathbb{P}^{(1)}, \\ \infty & : & ext{if } s_t \sim \mathbb{P}^{(2)}. \end{cases}$$

▶ If λ_t is the largest eigenvalue of \mathbf{M}_t under H_0 , then

$$n^{2/3}(\lambda_t - 2\sigma) \to \begin{cases} TW_t & : \text{ if } s_t \sim \mathbb{P}^{(1)}, \\ \infty & : \text{ if } s_t \sim \mathbb{P}^{(2)}. \end{cases}$$

CUSUM statistic (see, e.g., Horváth et al. (2003)):

$$\tilde{\Gamma}_{n,m}(k) := \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} (\lambda_t - 2\sigma) - \frac{k}{m} \sum_{t=1}^{m} n^{2/3} (\lambda_t - 2\sigma) \right) \\
= \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^{m} n^{2/3} \lambda_t \right)$$

Can we use

$$\widetilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^m n^{2/3} \lambda_t \right)$$

for testing H_0 vs. H_1 ?

Can we use

$$\tilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^{m} n^{2/3} \lambda_t \right)$$

for testing H_0 vs. H_1 ? **Two problems:**

- **Practical:** Limiting distribution is still governed by the unknown time dependence of the sequence $(\mathbf{W}_t, \mathbf{x}_t, s_t)_t$
- **Theoretical:** Under H_0 , we hope that

$$\tilde{\Gamma}_{n,m}(k) \approx \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} TW_t - \frac{k}{m} \sum_{t=1}^{m} TW_t \right),$$

Can we use

$$\tilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^{m} n^{2/3} \lambda_t \right)$$

for testing H_0 vs. H_1 ? **Two problems:**

- **Practical:** Limiting distribution is still governed by the unknown time dependence of the sequence $(\mathbf{W}_t, \mathbf{x}_t, s_t)_t$
- **Theoretical:** Under H_0 , we hope that

$$\tilde{\Gamma}_{n,m}(k) \approx \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} TW_t - \frac{k}{m} \sum_{t=1}^m TW_t \right),$$

Limiting results for $\tilde{\Gamma}_{n,m}(k)$ are only know if $n\to\infty$ and m,k are fixed. It is not even known whether the moments of $n^{2/3}(\lambda_t-2\sigma)$ converge to those of $TW_t!$

Can we use

$$\tilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^{m} n^{2/3} \lambda_t \right)$$

for testing H_0 vs. H_1 ? **Two problems:**

- **Practical:** Limiting distribution is still governed by the unknown time dependence of the sequence $(\mathbf{W}_t, \mathbf{x}_t, s_t)_t$
- **Theoretical:** Under H_0 , we hope that

$$\tilde{\Gamma}_{n,m}(k) \approx \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} TW_t - \frac{k}{m} \sum_{t=1}^m TW_t \right),$$

Limiting results for $\tilde{\Gamma}_{n,m}(k)$ are only know if $n\to\infty$ and m,k are fixed. It is not even known whether the moments of $n^{2/3}(\lambda_t-2\sigma)$ converge to those of $TW_t!$

▶ Idea: Division of $\tilde{\Gamma}_{n,m}(k)$ by a "normalizer" V_m that cancels out the long-run variance and hence makes the normalized statistic asymptotically pivotal.

- ▶ Idea: Division of $\tilde{\Gamma}_{n,m}(k)$ by a "normalizer" V_m that cancels out the long-run variance and hence makes the normalized statistic asymptotically pivotal.
- \triangleright Self-normalization \neq estimation of long-run variance!

- ▶ Idea: Division of $\tilde{\Gamma}_{n,m}(k)$ by a "normalizer" V_m that cancels out the long-run variance and hence makes the normalized statistic asymptotically pivotal.
- \triangleright Self-normalization \neq estimation of long-run variance!
- Normalizer drawing on the training sample:

$$V_m := \frac{n^{2/3}}{m^{3/2}} \sum_{t=1}^m \left| \sum_{s=1}^t \lambda_s - \frac{t}{m} \sum_{s=1}^m \lambda_s \right|,$$

- ▶ Idea: Division of $\tilde{\Gamma}_{n,m}(k)$ by a "normalizer" V_m that cancels out the long-run variance and hence makes the normalized statistic asymptotically pivotal.
- \triangleright Self-normalization \neq estimation of long-run variance!
- Normalizer drawing on the training sample:

$$V_m := \frac{n^{2/3}}{m^{3/2}} \sum_{t=1}^m \left| \sum_{s=1}^t \lambda_s - \frac{t}{m} \sum_{s=1}^m \lambda_s \right|,$$

Self-normalized detector:

$$\Gamma_{n,m}(k) = \frac{\tilde{\Gamma}_{n,m}(k)}{V_m}$$

Stylized results

Weak convergence under H₀

Under H_0 and adequate technical assumptions, as $m, n \to \infty$

$$\sup_{1 \leq k < \infty} \Gamma_{n,m}(k) \xrightarrow{d} \sup_{0 \leq x < \infty} \frac{[B(1+x) - B(1)] - xB(1)}{(1+x) \cdot \int_0^1 |B(s) - sB(1)| ds},$$

where B is the standard Brownian motion.

Methodology

Denoting by $q_{1-\alpha}$ the upper α -quantile of the limiting distribution, we reject the hypothesis H₀, if for some $k \geq 1$,

$$\Gamma_{n,m}(k) > q_{1-\alpha}$$
.

Methodology

Denoting by $q_{1-\alpha}$ the upper α -quantile of the limiting distribution, we reject the hypothesis H₀, if for some $k \geq 1$,

$$\Gamma_{n,m}(k) > q_{1-\alpha}$$
.

Theoretical guarantees

Under H_0 ,

$$\lim_{m\to\infty}\mathbb{P}\left(\sup_{1\leq k\leq\infty}\Gamma_{n,m}(k)>q_{1-\alpha}\right)=\alpha.$$

Under H₁ and $k^* \approx m^D$ for some D > 0, it holds that

$$\lim_{m \to \infty} \mathbb{P}\left(\sup_{1 < k < \infty} \Gamma_{n,m}(k) > q_{1-\alpha}\right) = 1.$$

Some technical details

To show the convergence

$$\sup_{1 \le k < \infty} \Gamma_{n,m}(k) \stackrel{d}{\to} \sup_{0 \le x < \infty} \frac{[B(1+x) - B(1)] - xB(1)}{(1+x) \cdot \int_0^1 |B(s) - sB(1)| ds}$$

under H_0 , we need two technical results:

To show the convergence

$$\sup_{1 \le k < \infty} \Gamma_{n,m}(k) \stackrel{d}{\to} \sup_{0 \le x < \infty} \frac{[B(1+x) - B(1)] - xB(1)}{(1+x) \cdot \int_0^1 |B(s) - sB(1)| ds}$$

under H_0 , we need two technical results:

1. **Gaussian approximation** for partial sum process $P_m(x)$, $x \in [0, T_m]$, of eigenvalues on a growing interval $[0, T_m]$.

To show the convergence

$$\sup_{1 \le k < \infty} \Gamma_{n,m}(k) \stackrel{d}{\to} \sup_{0 \le x < \infty} \frac{[B(1+x) - B(1)] - xB(1)}{(1+x) \cdot \int_0^1 |B(s) - sB(1)| ds}$$

under H_0 , we need two technical results:

- 1. **Gaussian approximation** for partial sum process $P_m(x)$, $x \in [0, T_m]$, of eigenvalues on a growing interval $[0, T_m]$.
 - \Rightarrow Approximate the denominator V_m in the self-normalized statistic by a transformation of a Brownian motion and similarly for the numerator $\tilde{\Gamma}_{n,m}(k)$ for values of $k \leq mT_m$.

To show the convergence

$$\sup_{1 \le k < \infty} \Gamma_{n,m}(k) \xrightarrow{d} \sup_{0 \le x < \infty} \frac{[B(1+x) - B(1)] - xB(1)}{(1+x) \cdot \int_0^1 |B(s) - sB(1)| ds}$$

under H_0 , we need two technical results:

- 1. **Gaussian approximation** for partial sum process $P_m(x)$, $x \in [0, T_m]$, of eigenvalues on a growing interval $[0, T_m]$.
 - \Rightarrow Approximate the denominator V_m in the self-normalized statistic by a transformation of a Brownian motion and similarly for the numerator $\tilde{\Gamma}_{n,m}(k)$ for values of $k \leq mT_m$.
- 2. For large k, we need appropriate **tail bounds**.

As discussed previously, we cannot formulate a Gaussian approximation directly for $\tilde{\Gamma}_{n,m}(x)$

$$\widetilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^m n^{2/3} \lambda_t \right).$$

As discussed previously, we cannot formulate a Gaussian approximation directly for $\tilde{\Gamma}_{n,m}(x)$

$$\widetilde{\Gamma}_{n,m}(k) = \frac{\sqrt{m}}{m+k} \left(\sum_{t=m+1}^{m+k} n^{2/3} \lambda_t - \frac{k}{m} \sum_{t=1}^m n^{2/3} \lambda_t \right).$$

Idea: Make use of our self-normalized approach and define a process $P_m(x)$ that we like to work with!

$$P_m(x) := \frac{1}{\sqrt{m\tau_n}} \sum_{t=1}^{\lfloor mx \rfloor} n^{2/3} [\lambda_t - b^{(n)}], \qquad x \in [0, T_m]$$

$$P_m(x) := \frac{1}{\sqrt{m\tau_n}} \sum_{t=1}^{\lfloor mx \rfloor} n^{2/3} [\lambda_t - b^{(n)}], \qquad x \in [0, T_m]$$

► Truncation of eigenvalues: For $\varepsilon > 0$, define the event

$$\Lambda_t := \{ |\lambda_t - 2\sigma| < n^{\varepsilon - 2/3} \}.$$

 Λ_t occurs with high probability for any t in the subcritical regime!

$$P_m(x) := \frac{1}{\sqrt{m\tau_n}} \sum_{t=1}^{\lfloor mx \rfloor} n^{2/3} [\lambda_t - b^{(n)}], \qquad x \in [0, T_m]$$

Truncation of eigenvalues: For $\varepsilon > 0$, define the event

$$\Lambda_t := \{ |\lambda_t - 2\sigma| < n^{\varepsilon - 2/3} \}.$$

 Λ_t occurs with high probability for any t in the subcritical regime!

Centering: $b^{(n)}$ is the conditional mean

$$b^{(n)} := \mathbb{E}[\lambda_1 | \Lambda_1].$$

$$P_m(x) := \frac{1}{\sqrt{m\tau_n}} \sum_{t=1}^{\lfloor mx \rfloor} n^{2/3} [\lambda_t - b^{(n)}], \qquad x \in [0, T_m]$$

Truncation of eigenvalues: For $\varepsilon > 0$, define the event

$$\Lambda_t := \{ |\lambda_t - 2\sigma| < n^{\varepsilon - 2/3} \}.$$

 Λ_t occurs with high probability for any t in the subcritical regime!

Centering: $b^{(n)}$ is the conditional mean

$$b^{(n)} := \mathbb{E}[\lambda_1 | \Lambda_1].$$

▶ **Standardization:** Letting $Y_t := \mathbb{I}\{\Lambda_t\}(\lambda_t - b^{(n)})$, we define τ_n as the finite sample variance

$$\tau_{n} := \mathbb{E}\left(\frac{1}{\sqrt{\lfloor mT_{m} \rfloor}} \sum_{t=1}^{\lfloor mT_{m} \rfloor} Y_{t}\right)^{2}.$$

We show a tail bound of the type:

$$\sup_{m^{1+\zeta} < k < \infty} \Gamma_{n,m}(k) = \frac{-P_m(1)}{V_m/\sqrt{\tau_n}} + o_P(1).$$

We show a tail bound of the type:

$$\sup_{m^{1+\zeta} < k < \infty} \Gamma_{n,m}(k) = \frac{-P_m(1)}{V_m/\sqrt{\tau_n}} + o_P(1).$$

Idea for the proof:

▶ Small $k \le mT_m$: Gaussian approximation applies.

We show a tail bound of the type:

$$\sup_{m^{1+\zeta} < k < \infty} \Gamma_{n,m}(k) = \frac{-P_m(1)}{V_m/\sqrt{\tau_n}} + o_P(1).$$

Idea for the proof:

- ▶ **Small** $k \le mT_m$: Gaussian approximation applies.
- ▶ Intermediate $mT_m < k \le m^D$: Use bounds for sums of bounded, mixing random variables (even though the bound depends on n).

We show a tail bound of the type:

$$\sup_{m^{1+\zeta} < k < \infty} \Gamma_{n,m}(k) = \frac{-P_m(1)}{V_m/\sqrt{\tau_n}} + o_P(1).$$

Idea for the proof:

- ▶ **Small** $k \le mT_m$: Gaussian approximation applies.
- ▶ Intermediate $mT_m < k \le m^D$: Use bounds for sums of bounded, mixing random variables (even though the bound depends on n).
- ▶ Large $k > m^D$: Temporal discounting (1/(m+k)) suppresses fluctuations.

Conclusion

Phase transition detection in high-dimensional random matrices is possible in real time.

- Phase transition detection in high-dimensional random matrices is possible in real time.
- ➤ **Self-normalized detector** based on extremal eigenvalues: no tuning parameters needed.

- Phase transition detection in high-dimensional random matrices is possible in real time.
- ➤ **Self-normalized detector** based on extremal eigenvalues: no tuning parameters needed.
- ► **Theory** based on random matrix theory and Gaussian approximation.

- Phase transition detection in high-dimensional random matrices is possible in real time.
- ➤ **Self-normalized detector** based on extremal eigenvalues: no tuning parameters needed.
- ► **Theory** based on random matrix theory and Gaussian approximation.
- ► **Applications**: pollution monitoring, primate social interactions

Thank you for your attention!

Feel free to check out our preprint:

Dörnemann, N., Kokoszka P., Kutta T. and Lee, S. (2025). Monitoring for a Phase Transition in a Time Series of Wigner Matrices.