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Wigner matrices



Wigner matrices

Definition

A Wigner matrix Wn ∈ Rn×n is a random matrix whose en-
tries (wij)1≤i ,j≤n are independent, up to the symmetry con-
straint wij = wji , and satisfy the conditions

E[wij ] = 0, E[w2
ij ] = σ2 + δijc , max

1≤i ,j≤n
E|wij |p ≤ cp,

Example: Gaussian Orthogonal Ensemble

Let G ∈ Rn×n be a random matrix with i.i.d. N (0, 1) entries.
Then,

Wn =
1√
2
(G+ G⊤)

is a Wigner matrix with σ2 = 1, c = 1.
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Signal detection in deformed Wigner matrices

When is it possible to detect a rank-one signal in an additively
deformed Wigner matrix Mn?

Mn = sxx⊤ +
1√
n
Wn

(s > 0, ∥x∥ = 1)

Answers from random matrix theory (as n → ∞):
s < σ s > σ

Eigenvalue λ1(Mn)
P→ 2σ λ1(Mn)

P→ s + σ2s−1

Eigenvector ⟨u1(Mn), x⟩2
P→ 0 ⟨u1(Mn), x⟩2

P→ 1− σ2s−2

(Capitaine et. al., 2009; Lee and Schnelli, 2015; Pizzo et al., 2013)
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Signal detection in deformed Wigner matrices (Summary)

When is it possible to detect a rank-one signal in an additively
deformed Wigner matrix Mn?

Mn = sxx⊤ +
1√
n
Wn

(s > 0, ∥x∥ = 1 possibly random)

▶ subcritical: no information about the signal

▶ supercritical: both the maximum eigenvalue and its
corresponding eigenvector contain information about
the signal



Sequential change-point
detection



Sequential change point detection

There exist mulitple paradigms
”Chu, C. S. J., Stinchcombe, M. and White, H. (1996).
Monitoring structural change. Econometrica 64 1045-1065.”

Idea: Let’s say we want to monitor for a change in the mean.

▶ Training sample X1,X2, . . . ,Xm with constant mean

▶ Then, data arrive sequentially Xm+1,Xm+2, . . .

▶ At each point k , use X1, . . . .,Xm+k to decide between

H0 : EX1 = EX2 = . . .

H1 : ∃k⋆ : EX1 = EX2 = . . . = EXm+k∗ ̸= EXm+k∗+1 = . . . ,

where k⋆ is a unknown change point.



Sequential change point detection

There exist mulitple paradigms
”Chu, C. S. J., Stinchcombe, M. and White, H. (1996).
Monitoring structural change. Econometrica 64 1045-1065.”

Idea: Let’s say we want to monitor for a change in the mean.

▶ Training sample X1,X2, . . . ,Xm with constant mean

▶ Then, data arrive sequentially Xm+1,Xm+2, . . .

▶ At each point k , use X1, . . . .,Xm+k to decide between

H0 : EX1 = EX2 = . . .

H1 : ∃k⋆ : EX1 = EX2 = . . . = EXm+k∗ ̸= EXm+k∗+1 = . . . ,

where k⋆ is a unknown change point.



Sequential change point detection

There exist mulitple paradigms
”Chu, C. S. J., Stinchcombe, M. and White, H. (1996).
Monitoring structural change. Econometrica 64 1045-1065.”

Idea: Let’s say we want to monitor for a change in the mean.

▶ Training sample X1,X2, . . . ,Xm with constant mean

▶ Then, data arrive sequentially Xm+1,Xm+2, . . .

▶ At each point k , use X1, . . . .,Xm+k to decide between

H0 : EX1 = EX2 = . . .

H1 : ∃k⋆ : EX1 = EX2 = . . . = EXm+k∗ ̸= EXm+k∗+1 = . . . ,

where k⋆ is a unknown change point.



Sequential change point detection - Illustration
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Statistical problem



Statistical Model for Regime Transition Detection
Model Setup:

▶ Data: Mt = stxn,tx⊤n,t +
1√
n
Wn,t

▶ P(1): subcritical regime, initial state, support [0, σ)

▶ P(2): supercritical regime, support (σ,∞)

▶ st ∼ P(1) or st ∼ P(2)

Training Sample:

▶ s1, . . . , sm ∼ P(1)

▶ Signal in M1, . . . ,Mm cannot be detected

Monitoring Phase:

▶ At each time point k , use M1, . . . ,Mm+k to decide whether

H0 : st ∼ P(1) ∀t
H1 : s1, . . . , sm+k∗ ∼ P(1), sm+k∗+1, sm+k∗+2, · · · ∼ P(2),

where k⋆ is a unknown change point.
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Methodological Criteria
Goal: A test for the emergence of a supercritical signal in a weakly
dependent time series of high-dimensional matrices

Some details:

▶ Asymptotics in n,m → ∞ (dimension of the matrix and
training sample size, respectively):

m ≍ nθ

for some constant θ ∈ (0,∞)

▶ For any n, the sequence (Wn,t , xn,t , st)t∈Z is strictly
stationary.

▶ The triangular array (Wn,t , xn,t , st)t∈Z is ϕ-mixing.

Two aims:

▶ Approximation of a nominal level α ∈ (0, 1) under H0

▶ Power consistency under H1
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Test statistic



A first change-point detector I

▶ If λt is the largest eigenvalue of Mt under H0, then

n2/3 (λt − 2σ) →

{
TWt : if st ∼ P(1),

∞ : if st ∼ P(2).

▶ CUSUM statistic (see, e.g., Horváth et al. (2003)):

Γ̃n,m(k) :=

√
m

m + k

( m+k∑
t=m+1

n2/3(λt − 2σ)− k

m

m∑
t=1

n2/3(λt − 2σ)

)

=

√
m

m + k

( m+k∑
t=m+1

n2/3λt −
k

m

m∑
t=1

n2/3λt

)
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A first change-point detector II

Can we use

Γ̃n,m(k) =

√
m

m + k

( m+k∑
t=m+1

n2/3λt −
k

m

m∑
t=1

n2/3λt

)
for testing H0 vs. H1?

Two problems:

▶ Practical: Limiting distribution is still governed by the
unknown time dependence of the sequence (Wt , xt , st)t

▶ Theoretical: Under H0, we hope that

Γ̃n,m(k) ≈
√
m

m + k

( m+k∑
t=m+1

TWt −
k

m

m∑
t=1

TWt

)
,

Limiting results for Γ̃n,m(k) are only know if n → ∞ and m, k
are fixed. It is not even known whether the moments of
n2/3(λt − 2σ) converge to those of TWt !
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A self-normalized detector

▶ Idea: Division of Γ̃n,m(k) by a ”normalizer” Vm that cancels
out the long-run variance and hence makes the normalized
statistic asymptotically pivotal.

▶ Self-normalization ̸= estimation of long-run variance !

▶ Normalizer drawing on the training sample:

Vm :=
n2/3

m3/2

m∑
t=1

∣∣∣∣ t∑
s=1

λs −
t

m

m∑
s=1

λs

∣∣∣∣,
▶ Self-normalized detector:

Γn,m(k) =
Γ̃n,m(k)

Vm
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Stylized results

Weak convergence under H0

Under H0 and adequate technical assumptions, as m, n → ∞

sup
1≤k<∞

Γn,m(k)
d→ sup

0≤x<∞

[B(1 + x)− B(1)]− xB(1)

(1 + x) ·
∫ 1
0 |B(s)− sB(1)|ds

,

where B is the standard Brownian motion.



Methodology
Denoting by q1−α the upper α-quantile of the limiting distribution,
we reject the hypothesis H0, if for some k ≥ 1,

Γn,m(k) > q1−α.

Theoretical guarantees

Under H0,

lim
m→∞

P

(
sup

1≤k<∞
Γn,m(k) > q1−α

)
= α.

Under H1 and k⋆ ≍ mD for some D > 0, it holds that

lim
m→∞

P

(
sup

1≤k<∞
Γn,m(k) > q1−α

)
= 1.
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Some technical details



Main technical results under H0

To show the convergence

sup
1≤k<∞

Γn,m(k)
d→ sup

0≤x<∞

[B(1 + x)− B(1)]− xB(1)

(1 + x) ·
∫ 1
0 |B(s)− sB(1)|ds

under H0, we need two technical results:

1. Gaussian approximation for partial sum process
Pm(x), x ∈ [0,Tm], of eigenvalues on a growing interval
[0,Tm].
⇒ Approximate the denominator Vm in the self-normalized
statistic by a transformation of a Brownian motion and
similarly for the numerator Γ̃n,m(k) for values of k ≤ mTm.

2. For large k , we need appropriate tail bounds.
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Gaussian approximation of Pm(x) for x ∈ [0,Tm] (1/2)

As discussed previously, we cannot formulate a Gaussian
approximation directly for Γ̃n,m(x)

Γ̃n,m(k) =

√
m

m + k

( m+k∑
t=m+1

n2/3λt −
k

m

m∑
t=1

n2/3λt

)
.

Idea: Make use of our self-normalized approach and define a
process Pm(x) that we like to work with!



Gaussian approximation of Pm(x) for x ∈ [0,Tm] (1/2)

As discussed previously, we cannot formulate a Gaussian
approximation directly for Γ̃n,m(x)

Γ̃n,m(k) =

√
m

m + k

( m+k∑
t=m+1

n2/3λt −
k

m

m∑
t=1

n2/3λt

)
.

Idea: Make use of our self-normalized approach and define a
process Pm(x) that we like to work with!



Gaussian approximation of Pm(x) for x ∈ [0,Tm] (2/2)

Pm(x) :=
1

√
mτn

⌊mx⌋∑
t=1

n2/3[λt − b(n)], x ∈ [0,Tm]

▶ Truncation of eigenvalues: For ε > 0, define the event

Λt := {|λt − 2σ| < nε−2/3}.
Λt occurs with high probability for any t in the subcritical
regime!

▶ Centering: b(n) is the conditional mean

b(n) := E[λ1|Λ1].

▶ Standardization: Letting Yt := I{Λt}(λt − b(n)), we define
τn as the finite sample variance

τn := E
(

1√
⌊mTm⌋

⌊mTm⌋∑
t=1

Yt

)2

.

τn is an approximate for the long-run variance

τ (n) :=
∑
t∈Z

E[YtY0],
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▶ Standardization: Letting Yt := I{Λt}(λt − b(n)), we define
τn as the finite sample variance

τn := E
(

1√
⌊mTm⌋

⌊mTm⌋∑
t=1

Yt

)2

.

τn is an approximate for the long-run variance

τ (n) :=
∑
t∈Z

E[YtY0],



Tail bound

We show a tail bound of the type:

sup
m1+ζ<k<∞

Γn,m(k) =
−Pm(1)

Vm/
√
τn

+ oP(1).

Idea for the proof:

▶ Small k ≤ mTm: Gaussian approximation applies.

▶ Intermediate mTm < k ≤ mD : Use bounds for sums of
bounded, mixing random variables (even though the bound
depends on n).

▶ Large k > mD : Temporal discounting (1/(m+ k)) suppresses
fluctuations.
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Conclusion



Take-home messages

▶ Phase transition detection in high-dimensional random
matrices is possible in real time.

▶ Self-normalized detector based on extremal eigenvalues: no
tuning parameters needed.

▶ Theory based on random matrix theory and Gaussian
approximation.

▶ Applications: pollution monitoring, primate social
interactions
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Thank you for your attention!

Feel free to check out our preprint:

Dörnemann, N., Kokoszka P., Kutta T. and Lee, S. (2025). Monitoring

for a Phase Transition in a Time Series of Wigner Matrices.

arxiv:2507.04983.


