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A Wigner matrix W, € R™" is a random matrix whose en-
tries (wjj)1<i j<n are independent, up to the symmetry con-
straint wj; = wj;, and satisfy the conditions

Elwj] =0, E[wj] = 0"+ jc, max E|w;|P < cp,
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Example: Gaussian Orthogonal Ensemble

Let G € R"™" be a random matrix with i.i.d. N(0, 1) entries.
Then,

W, = (G +G")

%\

is a Wigner matrix with 0?> =1,¢c = 1.
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Signal detection in deformed Wigner matrices

When is it possible to detect a rank-one signal in an additively
deformed Wigner matrix M,,?

1
M, = sxx| + —W,

NG

(s >0, |x][=1)

Answers from random matrix theory (as n — o0):

s<o s>0

Eigenvalue A1(M,,) £ 20 A1(M,,) B sto2s!
Eigenvector | (u3(M,),x)2 50 | (u1(M,),x)2 5 1 — 52572

(Capitaine et. al., 2009; Lee and Schnelli, 2015; Pizzo et al., 2013)



Signal detection in deformed Wigner matrices (Summary)

When is it possible to detect a rank-one signal in an additively
deformed Wigner matrix M,?

1
Mn = SXXT + %Wn

(s >0, ||x|| = 1 possibly random)

» subcritical: no information about the signal

> supercritical: both the maximum eigenvalue and its
corresponding eigenvector contain information about
the signal
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There exist mulitple paradigms
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Monitoring structural change. Econometrica 64 1045-1065."

Idea: Let's say we want to monitor for a change in the mean.

» Training sample X1, Xo, ..., X;;; with constant mean
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Sequential change point detection

There exist mulitple paradigms
"Chu, C. S. J., Stinchcombe, M. and White, H. (1996).
Monitoring structural change. Econometrica 64 1045-1065."

Idea: Let's say we want to monitor for a change in the mean.
» Training sample X1, Xo, ..., X;;; with constant mean

» Then, data arrive sequentially X411, Xm42, .- .

> At each point k, use Xi,...., X1k to decide between
H()ZEX]_ :EXQZ...
H1 s 3k* EXl = EXQ =...= EXm+k* 75 EXerk*Jrl =...

where k* is a unknown change point.
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Statistical Model for Regime Transition Detection
Model Setup:
> Data: My = s¢Xp X, ; + ﬁwnyt
» P(D: subcritical regime, initial state, support [0, o)
» P(): supercritical regime, support (o, c0)
> s ~PM or s, ~ P
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Statistical Model for Regime Transition Detection

Model Setup:

> Data: My = s¢Xp X, ; + ﬁwnyt

» P(D: subcritical regime, initial state, support [0, o)

» P(): supercritical regime, support (o, c0)

> s ~PM or s, ~ P
Training Sample:

> s1,...,5m~P1)

» Signal in My, ..., M, cannot be detected
Monitoring Phase:

> At each time point k, use My, ..., M1, to decide whether

Ho : st ~ P vt

. 1 2
Hi sty oo, Smpke ~ Pl )7 Smtk*+1y Smtk*+25 " ™ Pl )7

where k* is a unknown change point.
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Methodological Criteria

Goal: A test for the emergence of a supercritical signal in a weakly
dependent time series of high-dimensional matrices

Some details:
» Asymptotics in n,m — oo (dimension of the matrix and
training sample size, respectively):

ang

for some constant 6 € (0, 00)

» For any n, the sequence (W, ¢, Xn t, St)tez is strictly
stationary.

» The triangular array (W ¢, Xn t, St)tcz is ¢-mixing.

Two aims:
» Approximation of a nominal level o € (0,1) under Hg
» Power consistency under H;
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A first change-point detector |

> If \; is the largest eigenvalue of M; under Hg, then

TW;: : if s ~ P,

23 (AN —20) —
(e ) {oo if ¢ ~ P,

» CUSUM statistic (see, e.g., Horvath et al. (2003)):

[ m(K) —vm mik n*3(\s =2 )—ﬁzm:n%(x —20)
o B m+k t=m+1 t ’ m t=1 t 7

m—+k m
_ Vm u 2/3 k 2/3
= m+k Z n >\t m;n )\t

t=m+1
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A self-normalized detector

» Idea: Division of rn,m(k) by a "normalizer” V,, that cancels
out the long-run variance and hence makes the normalized
statistic asymptotically pivotal.

» Self-normalization # estimation of long-run variance !

» Normalizer drawing on the training sample:
2/3 M

n
Z oo Z A

m =30 Z

)

» Self-normalized detector:



Stylized results

Weak convergence under Hg

Under Hp and adequate technical assumptions, as m, n — oo

B(1 — xB(1
o () sup (BOEX) B~ xB(1)
1<k<oo 0<x<oo (14 x) - fo |B(s) — sB(1)|ds

where B is the standard Brownian motion.
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Methodology
Denoting by g1_. the upper a-quantile of the limiting distribution,
we reject the hypothesis Hg, if for some k > 1,

rn,m(k) > ql—a-

Theoretical guarantees

Under Hp,
lim P( sup [pm(k) > q1_a> = qa.
m—00 1<k<oo
Under Hy and k* =< mP for some D > 0, it holds that

lim JP’( sup [pm(k) > q1a> =1.

m—o0 1<k<oo




Some technical details
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Main technical results under H,

To show the convergence

o o) 4 sy 1B0X) =B BQ)
1<k<oo 0<x<oo (14 x) - fo |B(s) — sB(1)|ds

under Hp, we need two technical results:

1. Gaussian approximation for partial sum process
Pm(x), x € [0, Tp], of eigenvalues on a growing interval
[0, T
= Approximate the denominator V,, in the self-normalized
statistic by a transformation of a Brownian motion and
similarly for the numerator f,hm(k) for values of k < mT,,.

2. For large k, we need appropriate tail bounds.
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Gaussian approximation of P, (x) for x € [0, T,,] (1/2)

As discussed previously, we cannot formulate a Gaussian
approximation directly for ', ,(x)

m+k m
. Jm k
[ om(k) = ( > A - —~ > jn2/3At>.
t=1

m+ k t=m+1

Idea: Make use of our self-normalized approach and define a
process Pp,(x) that we like to work with!
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Gaussian approximation of P, (x) for x € [0, T,,] (2/2)

Lmx]

Pm(x) := Zn2/3[)\t ],  x€[0, T

» Truncation of eigenvalues: For ¢ > 0, define the event
Ae := {|At — 20| < n°72/3},
A+ occurs with high probability for any t in the subcritical

regime!
> Centering: b(") is the conditional mean

= E[)\1|/\1].

> Standardization: Letting Y; := I{A;}(\: — b("), we define
T as the finite sample variance
ary

<W 2 Yf>2'
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Tail bound

We show a tail bound of the type:

—Pm(1)
su [Mh.m(k + op(1
m1+4<2<oo 7 ( ) m/ﬁ P( )

Idea for the proof:
» Small kK < mT,,: Gaussian approximation applies.

» Intermediate mT,, < k < mP: Use bounds for sums of
bounded, mixing random variables (even though the bound
depends on n).

> Large k > mP: Temporal discounting (1/(m + k)) suppresses
fluctuations.
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Take-home messages

» Phase transition detection in high-dimensional random
matrices is possible in real time.

> Self-normalized detector based on extremal eigenvalues: no
tuning parameters needed.

» Theory based on random matrix theory and Gaussian
approximation.

> Applications: pollution monitoring, primate social
interactions



Thank you for your attention!

Feel free to check out our preprint:
Dérnemann, N., Kokoszka P., Kutta T. and Lee, S. (2025). Monitoring
for a Phase Transition in a Time Series of Wigner Matrices.
arxiv:2507.04983.



