Sharp oracle inequalities and universality of the AIC and FPE

Georg Köstenberger joint work with Moritz Jirak

17.09.2025

Department of Statistics and Operations Research, University of Vienna

Structure of the talk

Part 1: Why does the AIC work?

Part 2: Can we compare the AIC of two models?

Why does the AIC work?

Problem: Given X_1, \ldots, X_n , predict X_{n+1} .

"Optimal" solution:

$$\mathbb{E}(X_{n+1} \mid X_1, \dots, X_n) = \underset{Z \in \mathcal{M}(\sigma(X_1, \dots, X_n))}{\operatorname{argmin}} \mathbb{E}(X_{n+1} - Z)^2.$$

Classical approach: Fit linear models, i.e., predict X_{n+1} using

$$X_{n+1} \approx \sum_{j=1}^k \widehat{a}_j(k) X_{n+1-j}.$$

Problem: Given X_1, \ldots, X_n , predict X_{n+1} .

"Optimal" solution:

$$\mathbb{E}(X_{n+1} \mid X_1, \dots, X_n) = \underset{Z \in \mathcal{M}(\sigma(X_1, \dots, X_n))}{\operatorname{argmin}} \mathbb{E}(X_{n+1} - Z)^2.$$

Classical approach: Fit linear models, i.e., predict X_{n+1} using

$$X_{n+1} \approx \sum_{j=1}^k \widehat{a}_j(k) X_{n+1-j}.$$

Question: How do we pick k and $\hat{a}(k)$?

Problem: Given X_1, \ldots, X_n , predict X_{n+1} .

"Optimal" solution:

$$\mathbb{E}(X_{n+1} \mid X_1, \dots, X_n) = \underset{Z \in \mathcal{M}(\sigma(X_1, \dots, X_n))}{\operatorname{argmin}} \mathbb{E}(X_{n+1} - Z)^2.$$

Classical approach: Fit linear models, i.e., predict X_{n+1} using

$$X_{n+1} \approx \sum_{j=1}^k \widehat{a}_j(k) X_{n+1-j}.$$

Question: How do we pick k and $\widehat{a}(k)$? Does this work?

Problem: Given X_1, \ldots, X_n , predict X_{n+1} .

"Optimal" solution:

$$\mathbb{E}(X_{n+1} \mid X_1, \dots, X_n) = \underset{Z \in \mathcal{M}(\sigma(X_1, \dots, X_n))}{\operatorname{argmin}} \mathbb{E}(X_{n+1} - Z)^2.$$

Classical approach: Fit linear models, i.e., predict X_{n+1} using

$$X_{n+1} \approx \sum_{j=1}^k \widehat{a}_j(k) X_{n+1-j}.$$

Question: How do we pick k and $\widehat{a}(k)$? Does this work? What does "work" mean in this context?

Two ways to measure success

1. Asymptotic efficiency:

$$\frac{\text{Model selection-based prediction error}}{\text{Optimal Oracle-based prediction error}} \xrightarrow[n \to \infty]{\mathbb{P}} \text{Efficiency} \in [1, \infty].$$

2. Sharp finite-sample oracle inequalities:

Model selection-based prediction error \leq Optimal Oracle-based prediction error \times $\left(1+o(1)\right)$

with high probability.

Model selection via AIC

- 1. Choose $K_n \in \{1, \ldots, n-1\}$, and estimate $\widehat{a}(k)$ for $k = 1, \ldots, K_n$.
- 2. Choose the $k = \widehat{k}_n \in \{1, \dots, K_n\}$ for which

$$AIC(k) = n\log(\widehat{\sigma}_k^2) + 2k$$

is minimal, where

$$\widehat{\sigma}_{k}^{2} = \frac{1}{n - K_{n}} \sum_{t=K_{n}+1}^{n} \left(X_{t} - \sum_{j=1}^{k} \widehat{a}_{j}(k) X_{t-j} \right)^{2}.$$

3. Predict X_{n+1} using

$$X_{n+1} pprox \sum_{j=1}^{\widehat{k}_n} \widehat{a}_j(\widehat{k}_n) X_{n+1-j}.$$

Model selection via AIC

Problems:

- 1. Classical theory only covers linear processes? What about other dynamics such as GARCH, Markov Chains, SDEs, etc?
- 2. Finite sample behavior?
- 3. Assumptions are currently not falsifiable.

Table of Contents: Part 1

- 1. Setup and Oracle.
- 2. Model selection.
- 3. State of the art.
- 4. Contribution.

Setup and Oracle

We are given a sample X_1, \ldots, X_n from a stationary process $X = (X_t)_{t \in \mathbb{Z}}$.

For $t \in \mathbb{Z}$, let $V = \overline{\langle X_s \mid s < t \rangle} \subseteq L^2$. Then

$$P_V(X_t) = \sum_{j=1}^{\infty} a_j X_{t-j}.$$

The vector $a = (a_j)_{j \ge 1}$ represents the *best possible* linear model.

Goal: Approximate *a*.

For $t, k \in \mathbb{N}$, we set $V_k = \langle X_{t-1}, \dots, X_{t-k} \rangle \subseteq L^2$. We have

$$P_{V_k}(X_t) = \sum_{j=1}^k a_j(k) X_{t-j}.$$

The vector $a(k) = (a_1(k), \dots a_k(k))^T$ represents the best linear model of dimension k.

Idea: Approximate a by a(k), and estimate a(k) from the data.

Question: How do we estimate a(k)?

By Yule-Walker theory, we have

$$a(k) = \operatorname*{argmin}_{b \in \mathbb{R}^k} \mathbb{E} \left(X_t - \sum_{j=1}^k b_j X_{t-j} \right)^2 = R(k)^{-1} r(k),$$

where
$$R(k) = (R_{ij})_{i,j=1}^k$$
, $r(k) = (R_{0j})_{j=1}^k$ and $R_{ij} = \mathbb{E}(X_i X_j)$.

Question: How do we estimate a(k)?

By Yule-Walker theory, we have

$$a(k) = \operatorname*{argmin}_{b \in \mathbb{R}^k} \mathbb{E} \left(X_t - \sum_{j=1}^k b_j X_{t-j} \right)^2 = R(k)^{-1} r(k),$$

where
$$R(k) = (R_{ij})_{i,j=1}^k$$
, $r(k) = (R_{0j})_{j=1}^k$ and $R_{ij} = \mathbb{E}(X_i X_j)$.

Use plug-in estimation!

Setup: Estimating a(k)

For $k = 1, ..., K_n$, we set

$$\widehat{a}(k) = \widehat{R}(k)^{-1}\widehat{r}(k),$$

where
$$\widehat{R}(k)=(\widehat{R}_{ij})_{i,j=1}^k,\;\widehat{r}(k)=(\widehat{R}_{0,j})_{j=1}^k$$
 and

$$\widehat{R}_{ij} = \frac{1}{n - K_n} \sum_{t=K_n+1}^n X_{t-i} X_{t-j}.$$

Recap

Sharp finite-sample oracle inequalities:

Model selection-based prediction error

 \leq Optimal Oracle-based prediction error \times (1 + o(1))

with high probability.

We have an estimator $\widehat{a}(k)$ of a.

Question: Prediction error? Oracle?

Prediction error and oracle

Question: How close is $\widehat{a}(k)$ to a? What does "close" mean?

We measure in the *intrinsic units* of the process X_t , i.e., we use the norm

$$||z||_R^2 = \sum_{i,j=1}^{\infty} z_i z_j R_{ij},$$

for $z \in \ell^2$.

Our prediction error is

$$Q_n(k) = \|a - \widehat{a}(k)\|_R^2.$$

Prediction error and oracle

We have the following Bias-Covariance tradeoff

$$Q_n(k) = \|a - \widehat{a}(k)\|_R^2 = \|a - a(k)\|_R^2 + \|a(k) - \widehat{a}(k)\|_R^2.$$

The oracle is given by

$$L_n(k) = ||a - a(k)||_R^2 + \sigma^2 \frac{k}{n - K_n},$$

where $\sigma^2 = \mathbb{E}(X_0 - \sum_{j=1}^{\infty} a_j X_{-j})^2$, and the **oracle model order** is any $k_n^* \in \operatorname*{argmin}_{1 \leq k \leq K_n} L_n(k)$.

Prediction error and oracle

Question: What does it mean to be an oracle?

Theorem (informal)

If the problem is well-posed (e.g. $K_n \to \infty$), than for any sequence \tilde{k}_n of $\sigma(X_1, \ldots, X_n)$ measurable functions, and any $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\mathbb{P}\bigg(\frac{Q_n(\tilde{k}_n)}{L_n(k_n^*)}>1-\varepsilon\bigg)=1.$$

Model selection

AIC vs. BIC

True model among candidates?

	Yes	No
AIC	may not select true model	AIC selects approximation of the true model with asymptotically optimal bias-variance tradeoff
$\frac{BIC\ \mathbb{P}(\mathrm{BIC}\ selects\ true\ model) \to 1}{}$		may yield suboptimal approximation

AIC and FPE

1969: Final Prediction Error (FPE)

$$FPE(k) = \frac{n+k}{n-k}\widehat{\sigma}_k^2,$$

where

$$\widehat{\sigma}_k^2 = \frac{1}{n - K_n} \sum_{m = K_n + 1}^n \left(X_m - \sum_{j=1}^k \widehat{a}_j(k) X_{m-j} \right)^2$$

1973/4: Akaike Information Criterion (AIC)

$$AIC(k) = n\log(\widehat{\sigma}_k^2) + 2k.$$

AIC and FPE

1969: Final Prediction Error (FPE)

$$FPE(k) = \frac{n+k}{n-k}\widehat{\sigma}_k^2,$$

where

$$\widehat{\sigma}_k^2 = \frac{1}{n - K_n} \sum_{m = K_n + 1}^n \left(X_m - \sum_{j=1}^k \widehat{a}_j(k) X_{m-j} \right)^2$$

1973/4: Akaike Information Criterion (AIC)

$$AIC(k) = n\log(\widehat{\sigma}_k^2) + 2k.$$

Question: What guarantees do we have?

Classical literature

Classical literature

1980: Justification of FPE, AIC (and other criteria) in a prediction setting by R. Shibata in terms of **asymptotic efficiency**. Requires the innovations e_t in

$$X_t = \sum_{j=1}^{\infty} a_j X_{t-j} + e_t$$

to be i.i.d. Gaussian.

1995-2001: A. Karagrigoriou & S. Lee relax assumptions on e_t to i.i.d. with finite 8th moments.

2003,2005: C.-K. Ing & C.-Z. Wei introduce *same-realization* setting (still require i.i.d. innovations e_t).

2006: E. J. Candès (among others) popularizes usage of *oracle inequalities* (see also [Barron, Birgé, and Massart, PTRF, 1999]).

Classical literature: shortcomings

- 1. Innovations e_t need to be i.i.d. This excludes many frequently used models (e.g. GARCH, Markov processes, SDEs, etc.).
- 2. Assumptions are imposed on the unobservable innovations e_t (rather than X_t), and are thus impossible to check in practice.
- 3. No finite-sample oracle inequalities. Everything is purely asymptotic.

Contribution

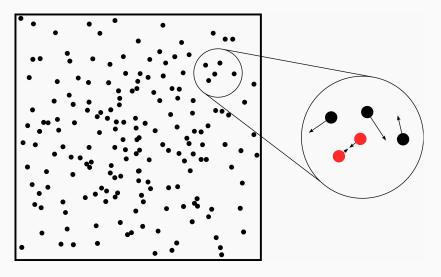
Assumptions

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. Then

- 1. $\mathbb{E}(X_t) = 0$ and $X_t \in L^q$, for q > 8.
- 2. X_t does not degenerate to a finite order autoregressive process.
- 3. The spectral density f_X is (uniformly) bounded away from zero.
- 4. $K_n \in \{1, ..., n-1\}$ is a divergent sequence of integers, and there is $\kappa > 0$ such that $K_n^{2+\kappa}/n$ is bounded.
- 5. X_t is weakly (physically) dependent.

Physical dependence: intuition

Goal: Measure temperature of gas.



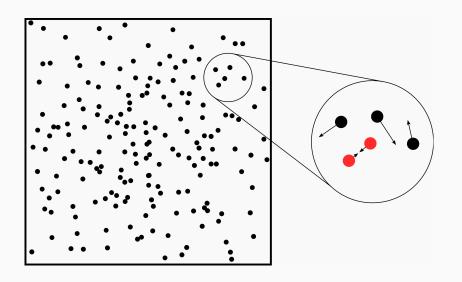
Let $(\varepsilon_t)_{t\in\mathbb{Z}}$ be an E-valued i.i.d. sequence, $g_t:E^\infty\to\mathbb{R}$ measurable.

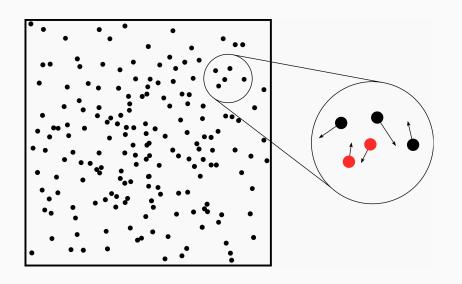
We assume

$$X_t = g_t(\varepsilon_t, \varepsilon_{t-1}, \dots).$$

Remark. Starting from a general stationary process X_t , we may end up with $e_t = g_t(\varepsilon_t, \varepsilon_{t-1}, \dots)$, but we can restrict ourselves to the case

$$X_t = g(\varepsilon_t, \varepsilon_{t-1}, \dots).$$





To measure the degree of dependence among the X_t 's, let $(\delta_t)_{t\in\mathbb{Z}}$ be an i.i.d. copy of $(\varepsilon_t)_{t\in\mathbb{Z}}$ and set

$$X'_t = g(\varepsilon_t, \ldots, \varepsilon_1, \delta_0, \varepsilon_{-1}, \ldots).$$

The quantity

$$D_q(\alpha) = \sum_{t=1}^{\infty} t^{\alpha} ||X_t - X_t'||_q$$

measures the rate at which the process X forgets its past.

Assumptions revisited

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. Then

- 1. $\mathbb{E}(X_t) = 0$ and $X_t \in L^q$, for q > 8.
- 2. X_t does not degenerate to a finite order autoregressive process.
- 3. The spectral density f_X is (uniformly) bounded away from zero.
- 4. $K_n \in \{1, ..., n-1\}$ is a divergent sequence of integers, and there is $\kappa > 0$ such that $K_n^{2+\kappa}/n$ is bounded.
- 5. X_t is weakly (physically) dependent, with $\alpha \geq 5/2$.

Contribution

Theorem

Under the above assumptions, any sequence \hat{k}_n of minimizers of AIC, FPE, Shibata's Criterion (and more) satisfies

$$\mathbb{P}\left(\left|\frac{Q_n(\widehat{k}_n)}{L_n(k_n^*)}-1\right|\leq 8(k_n^*)^{-\delta}\right)\geq 1-C(k_n^*)^{-\gamma},$$

for some $C, \delta, \gamma > 0$, and $k_n^* \to \infty$.

Examples

Examples include:

- 1. random walks on the regular group,
- 2. functionals of iterated random systems,
- 3. functionals of (augmented) GARCH models of any order,
- 4. functionals of (Banach space valued) linear processes,
- 5. solutions to many SDEs,
- 6. (in)finite memory Markov chains, and many more...

Simulations

The innovations e_t follow a GARCH(0.25,0.25) model with standard Gaussian innovations, that is,

$$e_t = \varepsilon_t L_t$$

where ε_t is a sequence of i.i.d. standard Gaussian random variables, and

$$L_t^2 = \frac{1}{10} + \frac{1}{4}L_{t-1}^2 + \frac{1}{4}e_{t-1}^2.$$

The process we consider is given by

$$X_t^{(p)} = e_t + \sum_{j=1}^{\infty} j^{-p} e_{t-j}, \quad p > 1.$$

Simulations

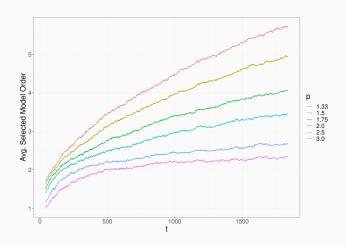


Figure 1: Average model order selected by AIC for $(X_s^{(p)})_{s=1}^t$ over 4000 runs, for various values of p and $t = 41, \ldots, 1840$.

Can we compare the AIC of two models?

Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n .

Problem: What do we use to predict X_{n+1} ?

```
Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n.
```

Problem: What do we use to predict X_{n+1} ?

Only X_1, \ldots, X_n ?

```
Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n.
```

Problem: What do we use to predict X_{n+1} ?

Only X_1, \ldots, X_n ? Inflation?

```
Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n. Problem: What do we use to predict X_{n+1}?
```

Only $X_1, ..., X_n$? Inflation? GDP growth?

Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n . **Problem:** What do we use to predict X_{n+1} ? Only X_1, \ldots, X_n ? Inflation? GDP growth? Interest rates?

Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n .

Problem: What do we use to predict X_{n+1} ?

Only X_1, \ldots, X_n ? Inflation? GDP growth? Interest rates? Or a combination of all of them?

Goal: Predict return X_{n+1} of U.S. Treasury bonds X_1, \ldots, X_n .

Problem: What do we use to predict X_{n+1} ?

Only X_1, \ldots, X_n ? Inflation? GDP growth? Interest rates? Or a combination of all of them?

Question: Can we use AIC to decide this question?

Goal: Predict next data point X_{n+1} from a time series $(X_t)_{t \in \mathbb{Z}}$.

Data: In addition to X_1, \ldots, X_n , we are given two (or more) time series Y_1, \ldots, Y_n and Z_1, \ldots, Z_n , which we can use to predict X_{n+1} .

Question: Should we use Y_1, \ldots, Y_n or Z_1, \ldots, Z_n to predict X_{n+1} ? Which of the two approximations

$$X_t pprox \sum_{j=1}^{k_Y} a_j(k_Y) Y_{t-j}$$
 or $X_t pprox \sum_{j=1}^{k_Z} b_j(k_Z) Z_{t-j}$

is better?

Part 1: Use AIC to select model order.

Part 2: Use AIC to select the model & model order.

General strategy

We are given X_1, \ldots, X_n , and $Y_1^{(m)}, \ldots, Y_n^{(m)}$, for $m = 1, \ldots, M_n$, and we want to predict X_{n+1} .

- 1. Predict X_{n+1} using the $Y^{(m)}$'s, for every $m = 1, ..., M_n$.
- 2. Compare all the AIC scores of those models.
- 3. Pick the $\widehat{m}_n \in \{1, \dots, M_n\}$ and $\widehat{k}_n \in \{1, \dots, K_n\}$ with the smallest AIC score.
- 4. Predict X_{n+1} via

$$X_{n+1} \approx \sum_{j=1}^{\widehat{k}_n} a^{(\widehat{m}_n)}(\widehat{k}_n) Y_{n+1-j}^{(\widehat{m}_n)}.$$

We are given (jointly stationary) random samples $Y_1^{(m)}, \ldots, Y_n^{(m)}$ for $m = 1, \ldots, M_n$ in addition to X_1, \ldots, X_n , and are interested in predicting X_{n+1} .

For every $m=1,\ldots,M_n$, and $t\in\mathbb{Z}$ let $V^{(m)}=\langle Y_s^{(m)}\mid s< t
angle$.

$$P_{V^{(m)}}(X_t) = \sum_{j=1}^{\infty} a_j^{(m)} Y_{t-j}^{(m)}.$$

The vector $a^{(m)} = (a_j^{(m)})_{j \ge 1}$ gives the best linear model for X_t based on $Y_t^{(m)}$.

We are given (jointly stationary) random samples $Y_1^{(m)}, \ldots, Y_n^{(m)}$ for $m = 1, \ldots, M_n$ in addition to X_1, \ldots, X_n , and are interested in predicting X_{n+1} .

For every $m=1,\ldots,M_n$, and $t\in\mathbb{Z}$ let $V^{(m)}=\overline{\langle Y_s^{(m)}\mid s< t
angle}$.

$$P_{V^{(m)}}(X_t) = \sum_{j=1}^{\infty} a_j^{(m)} Y_{t-j}^{(m)}.$$

The vector $a^{(m)} = (a_j^{(m)})_{j \ge 1}$ gives the best linear model for X_t based on $Y_t^{(m)}$.

Idea: Approximate $a^{(m)} = (a_j^{(m)})_{j\geq 1}$ and choose the model with the smallest prediction error (in L^2).

For $m=1,\ldots,M_n$, $k=1,\ldots,K_n$, and $t\in\mathbb{Z}$, set $V_k^{(m)}=\langle Y_{t-j}^{(m)}\mid j=1,\ldots,k\rangle\subseteq L^2$.

$$P_{V_k^{(m)}}(X_t) = \sum_{j=1}^k a_j^{(m)}(k) Y_{t-j}^{(m)},$$

where $a^{(m)}(k)$ is the best k-dimensional model for X_t given $Y_{t-1}^{(m)}, \ldots, Y_{t-k}^{(m)}$.

For $m=1,\ldots,M_n$, $k=1,\ldots,K_n$, and $t\in\mathbb{Z}$, set $V_k^{(m)}=\langle Y_{t-j}^{(m)}\mid j=1,\ldots,k\rangle\subseteq L^2$.

$$P_{V_k^{(m)}}(X_t) = \sum_{j=1}^k a_j^{(m)}(k) Y_{t-j}^{(m)},$$

where $a^{(m)}(k)$ is the best k-dimensional model for X_t given $Y_{t-1}^{(m)}, \ldots, Y_{t-k}^{(m)}$.

Idea: Approximate $a^{(m)}$ by $a^{(m)}(k)$ and estimate $a^{(m)}(k)$ from the data.

We can use Yule-Walker theory for regression to compute $a^{(m)}(k)$:

$$a^{(m)}(k) = R^{(m)}(k)^{-1}r^{(m)}(k),$$

where

$$R^{(m)}(k) = \left(\mathbb{E}(Y_i^{(m)}Y_j^{(m)})\right)_{i,j=1}^k,$$

$$r^{(m)}(k) = r^{(m)}(k) = \left(\mathbb{E}(X_kY_{k-1}^{(m)}), \dots, \mathbb{E}(X_kY_1^{(m)})\right)^T.$$

For $k = 1, ..., K_n$, we estimate $R^{(m)}(k)$ and $r^{(m)}(k)$ via $\widehat{R}^{(m)}(k) = (\widehat{R}_{ij}^{(m)})_{i,j=1}^k$, and $\widehat{r}^{(m)}(k) = (\widehat{r}_j^{(m)})_{j=1}^k$, where

$$\widehat{R}_{ij}^{(m)} = \frac{1}{n - K_n} \sum_{t=K_n+1}^{n} Y_{t-i}^{(m)} Y_{t-j}^{(m)}, \quad i, j = 1, \dots, K_n$$

and

$$\hat{r}_{j}^{(m)} = \frac{1}{n - K_{n}} \sum_{t=K_{n}+1}^{n} X_{t} Y_{t-j}^{(m)}, \quad j = 1, \dots, K_{n}.$$

Setup: Estimate

Estimate $a^{(m)}(k)$ via

$$\widehat{a}^{(m)}(k) = \widehat{R}^{(m)}(k)^{-1}\widehat{r}^{(m)}(k).$$

We set

$$Q^{(m)}(k) = \|a^{(m)} - \widehat{a}^{(m)}(k)\|_{R,m}^2$$

= $\|a^{(m)} - a^{(m)}(k)\|_{R,m}^2 + \|a^{(m)}(k) - \widehat{a}^{(m)}(k)\|_{R,m}^2$.

where

$$||z||_{R,m}^2 = \sum_{i,j=1}^{\infty} z_i z_j R_{ij}^{(m)}.$$

Setup: Oracle

We define

$$L_n^{(m)}(k) = \|a^{(m)} - a^{(m)}(k)\|_{R,m}^2 + \frac{k}{n - K_n} \sigma_m^2,$$

where

$$\sigma_m^2 = \mathbb{E}\left(X_t - \sum_{j=1}^{\infty} a_j^{(m)} Y_{t-j}^{(m)}\right)^2.$$

The oracle model m_n^* and the oracle model order k_n^* are given by

$$(m_n^*, k_n^*) \in \underset{\substack{1 \le k \le K_n \\ 1 \le m \le M_n}}{\operatorname{argmin}} L_n^{(m)}(k).$$

Model selection

Define

$$\widehat{\sigma}_{m}^{2}(k) = \frac{1}{n - K_{n}} \sum_{t=K_{n}+1}^{n} \left(X_{t} - \sum_{j=1}^{k} \widehat{a}_{j}^{(m)}(k) Y_{t-j}^{(m)} \right)^{2},$$

and set

AIC
$$(m, k) = n \log(\widehat{\sigma}_m^2(k)) + 2k$$
,
FPE $(m, k) = \frac{n+k}{n-k}\widehat{\sigma}_m^2(k)$.

Our estimators of m_n^* and k_n^* are given by

$$(\widehat{m}_n, \widehat{k}_n) \in \underset{1 \le m \le M_n}{\operatorname{argmin}} \operatorname{AIC}(m, k).$$

Model selection

Define

$$\widehat{\sigma}_{m}^{2}(k) = \frac{1}{n - K_{n}} \sum_{t=K_{n}+1}^{n} \left(X_{t} - \sum_{j=1}^{k} \widehat{a}_{j}^{(m)}(k) Y_{t-j}^{(m)} \right)^{2},$$

and set

AIC
$$(m, k) = n \log(\widehat{\sigma}_m^2(k)) + 2k$$
,
FPE $(m, k) = \frac{n+k}{n-k}\widehat{\sigma}_m^2(k)$.

Our estimators of m_n^* and k_n^* are given by

$$(\widehat{m}_n, \widehat{k}_n) \in \underset{\substack{1 \le k \le K_n \\ 1 \le m \le M_n}}{\operatorname{argmin}} \operatorname{AIC}(m, k).$$

Question: Does this work?

Assumptions

Let $(\varepsilon_t)_{t\in\mathbb{Z}}$ be an i.i.d. sequence, and assume that there are functions g, and $g^{(m)}$ such that

$$X_t = g(\varepsilon_t, \varepsilon_{t-1}, \dots), \quad ext{and}$$
 $Y_t^{(m)} = g^{(m)}(\varepsilon_t, \varepsilon_{t-1}, \dots),$

for $m \ge 1$ and $t \in \mathbb{Z}$. For $\alpha \ge 0$ we define

$$\begin{split} D_q^X(\alpha) &= \sum_{t=1}^{\infty} t^{\alpha} \| X_t - X_t' \|_q, \\ D_q^Y(\alpha) &= \sup_{m \ge 1} \left\{ \| Y^{(m)} \|_q + \sum_{t=1}^{\infty} t^{\alpha} \| Y_t^{(m)} - (Y_t^{(m)})' \|_q \right\}. \end{split}$$

Recall: (δ_t) i.i.d. copy of (ε_t) , $X_t' = g(\varepsilon_t, \dots, \varepsilon_1, \delta_0, \varepsilon_{-1}, \dots)$ and $(Y_t^{(m)})' = g^{(m)}(\varepsilon_t, \dots, \varepsilon_1, \delta_0, \varepsilon_{-1}, \dots)$.

Assumptions

Let $(X_t, Y_t^{(m)})_{t \in \mathbb{Z}}$ be a centered, stationary process for all $m \ge 1$. For q > 8 and $\alpha \ge 5/2$ we assume:

- 1. $X_t, Y_t^{(m)} \in L^q$ for all $m \ge 1$.
- 2. $X_t, Y_t^{(m)}$ are jointly phys. dep. with $D_q^X(\alpha), D_q^Y(\alpha) < \infty$.
- 3. There is a $c_s > 0$ such that the spectral densities $f^{(m)}$ of $Y_t^{(m)}$ satisfy $f^{(m)} \ge c_s$ for all $m \ge 1$.
- 4. The sequence $a^{(m)}$ is not eventually zero for any $m \ge 1$.
- 5. The sequences $K_n \in \{1, \ldots, n-1\}$ and $M_n \in \mathbb{N}$ are divergent, and there is $\kappa > 0$ such that $K_n^{2+\kappa}/n$ is bounded, $M_n/K_n^{2\alpha} \to 0$, and $K_nM_n/n \to 0$.
- 6. There is a $\psi > 0$, and a $n_0 \ge 1$, such that for all $n \ge n_0$

$$\sigma_{m_n^*}^2 \leq \inf_{\substack{1 \leq m \leq M_n \\ m \neq m_n^*}} \sigma_m^2 - n^{-1/2} \log^{1/2+\psi}(n).$$

Contribution

Theorem

Given the previous assumptions, any sequence of minizers $(\widehat{m}_n, \widehat{k}_n)$ of AIC, FPE, Shibata's Criterion (and more) satisfies

$$\mathbb{P}\left(\left|\frac{Q^{(\widehat{m}_n)}(\widehat{k}_n)}{L_n^{(m_n^*)}(k_n^*)}-1\right|\leq 8(k_n^*)^{-\delta}\right)\geq 1-C(k_n^*)^{-\gamma},$$

for some $C, \delta, \gamma > 0$.

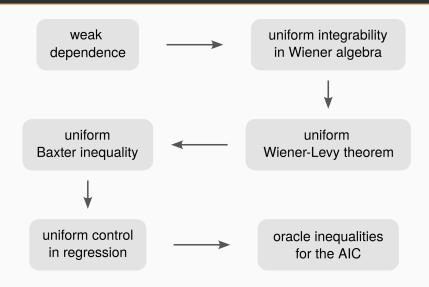
Questions?

- H. Akaike, *Fitting Autoregressive Models for Prediction*. Ann. Inst. Stat. Math. 21, 243–247 (1969).
- H. Akaike, Statistical predictor identification. Ann. Inst. Stat. Math. 22, 203–217 (1970).
- H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle. Proceeding of the Second International Symposium on Information Theory, 267-281 (1973).
- H. Akaike, *A New Look at the Statistical Model Identification*, IEEE Trans. Automat. Control AC19-6, 716-723 (1974).
- G. Schwarz, Estimating the Dimension of a Model. Ann. Statist., 6(2), 461-464 (1978).

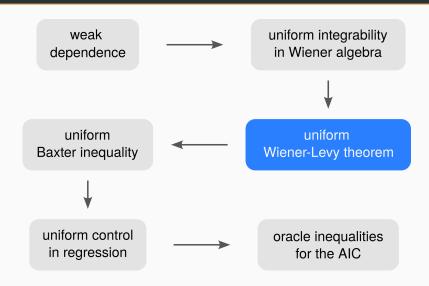
Questions?

- R. Shibata. Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process. Ann. Statist., 8(1), 147–164, 1980.
- S. Lee and A. Karagrigoriou. An asymptotically optimal selection of the order of a linear process. Sankhyā Ser. A, (1961- 2002), 63, 01 2001. 73
- C.-K. Ing and C.-Z. Wei. *Order selection for same-realization predictions in autoregressive processes*. Ann. Statist., 33(5), 2423–2474, 2005.
- C.-K. Ing. Accumulated Prediction Errors, Information Criteria and Optimal Forecasting for Autoregressive Time Series. Ann. Statist., 35(3), 1238–1277, 2007.
- A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization Probab. Theory Related Fields, 113(3):301–413, 1999.
- E. J. Candès. Modern statistical estimation via oracle inequalities. Acta Numer., 15:257–325, 2006

The argument



The argument



Wiener-Levy Theorem

Theorem

Let $f(t) = \sum_{h \in \mathbb{Z}} f_h e^{iht} : [0, 2\pi] \to \mathbb{C}$ such that $\sum_{h \in \mathbb{Z}} |f_h| < \infty$, and H is an analytic (not necessarily single-valued) function which is regular at every point of $\operatorname{im}(f)$, then $H \circ f$ has an absolutely convergent Fourier series.

Uniform integrability in the Wiener algebra

Let $\lambda \geq 0$, and set

$$\mathcal{W}_{\lambda} = igg\{ f(t) = \sum_{h \in \mathbb{Z}} f_h e^{iht} \, igg| \, \sum_{h \in \mathbb{Z}} |h|^{\lambda} |f_h| < \infty igg\}.$$

A set $F \subseteq \mathcal{W}_{\lambda}$ is called *uniformly integrable* (in \mathcal{W}_{λ}), if

$$\lim_{K\to\infty} \sup_{f\in F} \sum_{|k|>K} |k|^{\lambda} |f_k| = 0.$$

Question: Do analytic functions preserve uniform integrability?

Uniform Wiener-Levy theorem

Theorem

Let $\lambda \geq 0$, and $F \subseteq \mathcal{W}_{\lambda}$ be uniformly integrable. If H is an analytic (not necessarily single-valued) function which is regular at every point of $\bigcup_{f \in F} \operatorname{im}(f)$, then

$$H(F) = \{ H \circ f \mid f \in F \}$$

is uniformly integrable in \mathcal{W}_{λ} .

Uniform Baxter inequalities

Theorem

Let $(X_t, Y_t^{(m)})_{t \in \mathbb{Z}}$, be centered, jointly stationary processes for $m \in \mathcal{M}$. If the family of spectral densities $f^{(m)}$ of the $Y_t^{(m)}$'s is uniformly integrable in \mathcal{W}_0 , and

$$\inf_{\substack{m \in \mathcal{M} \\ t \in [0,2\pi]}} f^{(m)}(t) > 0,$$

then there is a constant C>0 and a $k_0>0$, such that for all $k\geq k_0$, $m\in\mathcal{M}$, and all non-decreasing functions $g:\mathbb{N}\to(0,\infty)$,

$$\sum_{j=1}^k g(j)|a_j^{(m)}(k)-a_j^{(m)}| \leq Cg(k)\sum_{j=k+1}^{\infty}|a_j^{(m)}|,$$

where $a^{(m)}$ and $a^{(m)}(k)$ are the coefficients of the best ∞/k -dimensional linear model for X_t based on $Y_t^{(m)}$.