Sharp oracle inequalities and
universality of the AIC and FPE

Georg Kostenberger
joint work with Moritz Jirak

17.09.2025

Department of Statistics and Operations Research,
University of Vienna



Structure of the talk

Part 1: Why does the AIC work?

Part 2: Can we compare the AIC of two models?



Why does the AIC work?



Motivation: Prediction Problem

Problem: Given Xi,..., X,, predict X,11.
“Optimal” solution:

E(Xn+1 | Xla ooc 7Xn) = argmin IE()<n—|-1 - Z)2
ZeM(o(Xi,....Xn))

Classical approach: Fit linear models, i.e., predict X,;1 using

k

X1 ~ Z aj(k)Xnt1-;-
j=1



Motivation: Prediction Problem

Problem: Given Xi,..., X,, predict X,11.
“Optimal” solution:

E(Xn+1 | Xla ooc 7Xn) = argmin IE()<n—|-1 - Z)2
ZeM(o(Xu,.... Xn))
Classical approach: Fit linear models, i.e., predict X,;1 using

k

X1 ~ Z aj(k)Xnt1-;-
j=1

Question: How do we pick k and a(k)?



Motivation: Prediction Problem

Problem: Given Xi,..., X,, predict X,11.
“Optimal” solution:

E(Xn+1 | Xla ooc 7Xn) = argmin IE()<n—|-1 - Z)2
ZeM(o(Xu,.... Xn))
Classical approach: Fit linear models, i.e., predict X,;1 using

k

X1 ~ Z aj(k)Xnt1-;-
j=1

Question: How do we pick k and a(k)? Does this work?



Motivation: Prediction Problem

Problem: Given Xi,..., X,, predict X,11.
“Optimal” solution:

E(Xn+1 | Xla ooc 7Xn) = argmin IE()<n—|-1 - Z)2
ZeM(o(Xi,....Xn))

Classical approach: Fit linear models, i.e., predict X,;1 using

k

X1 ~ Z aj(k)Xnt1-;-
j=1

Question: How do we pick k and a(k)? Does this work? What
does “work” mean in this context?



Two ways to measure success

1. Asymptotic efficiency:

Model selection-based prediction error p .
- — Efficiency € [1, o0].
Optimal Oracle-based prediction error n—oo

2. Sharp finite-sample oracle inequalities:

Model selection-based prediction error

< Optimal Oracle-based prediction error x (1 + o(1))

with high probability.



Model selection via AIC

1. Choose K, € {1,...,n— 1}, and estimate a(k) for
k=1,...,K,.

2. Choose the k = k, € {1,..., Ky} for which
AIC(k) = nlog(5?) + 2k

is minimal, where

k 2
. 1 N
O'z: n—Kn 21<Xt—23j(k)th> .

3. Predict X411 using

Xn+1 ~ é\J'(Z(\n))<n—‘,-1—j-



Model selection via AIC

Problems:

1.

Classical theory only covers linear processes? What about
other dynamics such as GARCH, Markov Chains, SDEs, etc?

Finite sample behavior?
Assumptions are currently not falsifiable.
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Setup and Oracle




We are given a sample Xi, ..., X, from a stationary process
X = (Xt)tez.-

Fort€Z, let V= (Xs|s<t)C L% Then
P\/(Xt) = Zant_j.
j=1

The vector a = (aj);j>1 represents the best possible linear model.

Goal: Approximate a.



For t,k € N, we set Vi = (X;_1,..., Xe—x) C L?. We have

k

Pu(X) = 3 a(k) X,

j=1

The vector a(k) = (a1(k),...ax(k))" represents the best linear
model of dimension k.

Idea: Approximate a by a(k), and estimate a(k) from the data.



Question: How do we estimate a(k)?

By Yule-Walker theory, we have

k 2
a(k) = argminE(Xt -y ijtJ) = R(k)"tr(k),

bERK el

where R(k) = (R,-j)ffj:l, r(k) = (Roj)j-‘zl and R = E(X;X;).
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Question: How do we estimate a(k)?

By Yule-Walker theory, we have

k 2
a(k) = argminE(Xt -y ijtJ) = R(k)"tr(k),

bERK el
where R(k) = (R,-j)ffj:l, r(k) = (Roj)j-‘zl and R = E(X;X;).

Use plug-in estimation!
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Setup: Estimating a(k)

For k=1,..., K,, we set
a(k) = R(k)~*7(k),

where I?(k) = (ﬁu)f‘Fl r(k) = (’5071)}(:1 and

~ 1 n
R’J = n— K Z Xt—iXt—j'
M=K, +1

11



Sharp finite-sample oracle inequalities:

Model selection-based prediction error
< Optimal Oracle-based prediction error x (1 + o(1))

with high probability.

We have an estimator a(k) of a.

Question: Prediction error? Oracle?

12



Prediction error and oracle

Question: How close is a(k) to a? What does “close” mean?

We measure in the intrinsic units of the process X;, i.e., we use the

norm
(o.]
IzI% =D zizRy,
ij=1

for z € (2.

Our prediction error is

Qn(k) = l|la = a(K)|%-

13



Prediction error and oracle

We have the following Bias-Covariance tradeoff
Qu(k) = lla = a(K)IE = lla — a(k)|[% + lla(k) — 3(K)|%-
The oracle is given by

k

— lla — a(k)II2 2
Lo(k) = lla—a(k)lzr + o K

where 02 = E(Xp — Y72, a;X_;)*, and the oracle model order is
any
k, € argmin L,(k).
1<k<K,

14



Prediction error and oracle

Question: What does it mean to be an oracle?

Theorem (informal)
If the problem is well-posed (e.g. K, — o), than for any sequence

k, of o(Xi,...,X,) measurable functions, and any € > 0 we have

n@&x@(f:((kk;)) - 1—&«) .y

ii5)



Model selection




AIC vs. BIC

True model among candidates?

Yes No

AIC selects approximation of the
AIC  may not select true model true model with asymptotically

optimal bias-variance tradeoff

may yield
BIC P(BIC selects true model) — 1
suboptimal approximation

16



AIC and FPE

1969: Final Prediction Error (FPE)

n+k
o
n—k *

FPE(K) =

where

2
62 = — K <X —Z (k)xmj>
n m= Kn+1

j=1
1973 /4: Akaike Information Criterion (AIC)

AIC(k) = nlog(52) + 2k.
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AIC and FPE

1969: Final Prediction Error (FPE)

n+kA2

FPE(K) = ——— 5%,

where

2
62 = — K <X —Z (k)xmj>
n m= Kn+1

j=1
1973 /4: Akaike Information Criterion (AIC)

AIC(k) = nlog(52) + 2k.

Question: What guarantees do we have?
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Classical literature




Classical literature

1980: Justification of FPE, AIC (and other criteria) in a prediction
setting by R. Shibata in terms of asymptotic efficiency. Requires
the innovations e; in

[ee]
Xt = Z ant—j + et
j=1

to be i.i.d. Gaussian.

1995-2001: A. Karagrigoriou & S. Lee relax assumptions on e; to
i.i.d. with finite 8th moments.

2003,2005: C.-K. Ing & C.-Z. Wei introduce same-realization
setting (still require i.i.d. innovations e;).

2006: E. J. Candés (among others) popularizes usage of oracle
inequalities (see also [Barron, Birgé, and Massart, PTRF, 1999]).
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Classical literature: shortcomings

1. Innovations e; need to be i.i.d. This excludes many frequently
used models (e.g. GARCH, Markov processes, SDEs, etc.).

2. Assumptions are imposed on the unobservable innovations e;
(rather than X;), and are thus impossible to check in practice.

3. No finite-sample oracle inequalities. Everything is purely
asymptotic.

19



Contribution




Let (X¢)tcz be a stationary process. Then

1. E(X;) =0 and X; € L9, for g > 8.
2. X; does not degenerate to a finite order autoregressive

process.

3. The spectral density fx is (uniformly) bounded away from
zero.

4. K, € {1,...,n— 1} is a divergent sequence of integers, and

there is x > 0 such that K27%/n is bounded.
5. X; is weakly (physically) dependent.

20



Physical dependence: intuition

Goal: Measure temperature of gas.
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Physical Dependence

Let (e¢)tez be an E-valued i.i.d. sequence, g; : E* — R
measurable.

We assume
Xi = gt(gt, Et—1,y--- )

Remark. Starting from a general stationary process X;, we may
end up with e; = gi(et,€1-1,...), but we can restrict ourselves to
the case

Xt - g(sta Et—1y--- )

22



Physical Dependence
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Physical Dependence

To measure the degree of dependence among the X;'s, let (0¢)tez
be an i.i.d. copy of (¢¢)tcz and set

X =g(ety - 1€1,00,6-1,.-.).
The quantity

Dy(a) =Y t*IIXe — X{lIq
t=1

measures the rate at which the process X forgets its past.
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Assumptions revisited

Let (X¢)tcz be a stationary process. Then

1. E(X;) =0 and X; € L9, for g > 8.
2. X; does not degenerate to a finite order autoregressive

process.

3. The spectral density fx is (uniformly) bounded away from
zero.

4. K, € {1,...,n— 1} is a divergent sequence of integers, and

there is x > 0 such that K27%/n is bounded.
5. X is weakly (physically) dependent, with oo > 5/2.
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Contribution

Theorem

Under the above assumptions, any sequence E,, of minimizers of
AIC, FPE, Shibata’s Criterion (and more) satisfies

“( f((f; -1| <800)) 21— ),

for some C,0,~v > 0, and k;; — 0.

26



Examples include:

1. random walks on the regular group,
2. functionals of iterated random systems,

3. functionals of (augmented) GARCH models of any order,

>

functionals of (Banach space valued) linear processes,
5. solutions to many SDEs,

6. (in)finite memory Markov chains, and many more...

27



Simulations

The innovations e; follow a GARCH(0.25,0.25) model with
standard Gaussian innovations, that is,

e = €tly,

where €; is a sequence of i.i.d. standard Gaussian random
variables, and
1 1
2 2 2
Lt 10 + — L 4et71.

The process we consider is given by

o0
Xt(p) :et+z_jipet_j7 p > 1.
j=1

28



Simulations
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Figure 1: Average model order selected by AIC for (Xs(p))g::l over 4000

runs, for various values of p and t = 41,...,1840.
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Can we compare the AIC of
two models?




Motivation: Compare AIC of two models?

Goal: Predict return X1 of U.S. Treasury bonds Xi, ..., X,.
Problem: What do we use to predict X117
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Motivation: Compare AIC of two models?

Goal: Predict return X1 of U.S. Treasury bonds Xi, ..., X,.
Problem: What do we use to predict X117

Only Xi,...,X,? Inflation? GDP growth? Interest rates? Or a
combination of all of them?

Question: Can we use AIC to decide this question?

30



Motivation: Compare AIC of two models?

Goal: Predict next data point X, 1 from a time series (X;)¢ez-

Data: In addition to Xi,..., X,, we are given two (or more) time
series Y1,..., Y, and Zy,..., Z,, which we can use to predict

ran

Question: Should we use Yi,...,Y, or Z1,...,Z, to predict
Xnt+1?7 Which of the two approximations

kz

ky
X, ~ Z aj(ky)Yej or Xem Z bj(kz)Z:—j
j=1 Jj=1

is better?

31



Motivation: Compare AIC of two models?

Part 1: Use AIC to select model order.

Part 2: Use AIC to select the model & model order.

32



General strategy

We are given Xi,...,X,, and Yl(m), e Y,S”’), form=1,...,M,,
and we want to predict X,11.

1. Predict X,41 using the y(m)'s for every m=1,..., M,.

2. Compare all the AIC scores of those models.

3. Pick the i, € {1,...,M,} and k, € {1,..., Ky} with the
smallest AIC score.

4. Predict X,41 via

k) Y (™)

”+1 n+1—j°

I
§

33



We are given (jointly stationary) random samples Yl(m), ey Y,Sm)
for m=1,..., M, in addition to Xi, ..., X,, and are interested in
predicting X,41.

Forevery m=1,...,M,, and t € Z let V(™) = <Ys(m) | s <t).
Pum(X:) = > a™ vim,
j=1

The vector al™ = (a(-m))jzl gives the best linear model for X;

j
based on Y{™.

34



We are given (jointly stationary) random samples Yl(m), ceey Y,Sm)
for m=1,..., M, in addition to Xi, ..., X,, and are interested in
predicting X,41.

Forevery m=1,...,M,, and t € Z let V(™) = <Ys(m) | s <t).
Pum(X:) = > a™ vim,
j=1
The vector al™ = (aj(-m))jzl gives the best linear model for X;
based on Y{™.
Idea: Approximate a(™) = (aj(.m))jzl and choose the model with

the smallest prediction error (in L2).

34



Form=1,... M, k=1,...,K,, and t € Z, set
Vim = (v |j=1,...,k C L2

where a(™ (k) is the best k-dimensional model for X; given

ym v
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Form=1,... M, k=1,...,K,, and t € Z, set
Vim = (v |j=1,...,k C L2

where a(™ (k) is the best k-dimensional model for X; given
y(m) Y(m)
t—10- 0 Te k-

Idea: Approximate a(™ by a(™ (k) and estimate a(™ (k) from the
data.

85



We can use Yule-Walker theory for regression to compute a(™(k):
™ (k) = R (k) (k),
where

RUM(K) = E(Y ™Y ™)),

rm k) = M k) = (E(X Y™, . EXe V™) T

36



For k =1,...,Kp,, we estimate R(™ (k) and r(™ (k) via
)

R(m)( ) = (R(m)) fj=1, and ?{’")(k) = (’rf.m) szl, where
R = Z 4G A7 N N
Mt Knt1
and
},\/(m) Z Xt —J Y J - 1 K

"= Kn+1

37



Setup: Estimate

Estimate a(™ (k) via

3 (k) = R (k) "1™ (k).

Q™ (k) = [|a™ = & (K) [ m
= [|a™ = "™ (k) 7 m + 13 (K) = 3™ (k) [F

where

o0
212, = Y ziZiR(™.
ij=1

38



Setup: Oracle

We define

LM (k) = [ — aM (k)2 + — 2

n n— K m»
n
where

[e'¢) 2
o2 = E(Xt -3 8™ Y}T}) .
j=1

The oracle model m? and the oracle model order k are given by

(m%, k*) € argmin L™ (k).
1<k<K,
1<m<M,

39



Model selection

Define

and set

AIC(m, k) = nlog(52 (k)) + 2k,

FPE(m, k) = 2 /;&?n(k).
n J—

Our estimators of m};, and k;; are given by

(i, kn) € argmin AIC(m, k).
1<k<K,
1<m<M,

40



Model selection

Define

and set

AIC(m, k) = nlog(52 (k)) + 2k,

FPE(m, k) = 2 /;&?n(k).
n J—

Our estimators of m};, and k;; are given by

(i, kn) € argmin AIC(m, k).
1<k<K,
1<m<M,

Question: Does this work?
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Let (e¢)tez be an i.i.d. sequence, and assume that there are
functions g, and g(™ such that

X: = g(et,e4-1,...), and
Yt(m) = g(m)(5t7 Et—1y--- )7

for m>1and t € Z. For a« > 0 we define
DF(a) =Y t*[1X; = X{lq»
t=1

DY (a) = sup{ IVl + 3 e Vi = (V7Y .
iz t=1

Recall: (0;) i.i.d. copy of (¢¢), X! = g(&t,...,€1,00,6-1,...) and
(Yt(m))’ = g(M(ey,...,e1,00,61,...).

41



Let (X, Yt(m))tez be a centered, stationary process for all m > 1.
For g > 8 and a > 5/2 we assume:

1. X, Y™ € 19 for all m > 1.
2. X, Yt(m) are jointly phys. dep. with DX(a), D) () < oc.

3. Thereis a ¢; > 0 such that the spectral densities (™ of Yt(m)
satisfy (™) > ¢, for all m > 1.

4. The sequence a(™ is not eventually zero for any m > 1.

5. The sequences K, € {1,...,n—1} and M, € N are divergent,
and there is £ > 0 such that K27%/n is bounded,
M,/K2* — 0, and K,M,/n — 0.

6. Thereis a ¢ >0, and a ng > 1, such that for all n > ng

< inf o2 — nY210gt/ 2 ¥ (n).

T 1<m<M,
m#mp

2
T
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Contribution

Theorem

~

Given the previous assumptions, any sequence of minizers (M, k)
of AIC, FPE, Shibata’s Criterion (and more) satisfies

() (.
P(’ Q™) (k,)

() _ 1] < S(k;:)-é) >1- C(k),
L (k)

for some C,6,v > 0.
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Maximum Likelihood Principle. Proceeding of the Second
International Symposium on Information Theory, 267-281
(1973).

H. Akaike, A New Look at the Statistical Model Identification,
IEEE Trans. Automat. Control AC19-6, 716-723 (1974).

G. Schwarz, Estimating the Dimension of a Model. Ann.
Statist., 6(2), 461-464 (1978).
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e A. Barron, L. Birgé, and P. Massart. Risk bounds for model
selection via penalization Probab. Theory Related Fields,
113(3):301-413, 1999.
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weak uniform integrability
> - "
dependence in Wiener algebra
uniform uniform
Baxter inequality Wiener-Levy theorem
u_niform coptrol oracle inequalities
in regression for the AIC
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Wiener-Levy Theorem

Theorem _
Let f(t) =,z €™ : [0,21] — C such that >, |fa| < oo,
and H is an analytic (not necessarily single-valued) function which

is regular at every point of im(f), then H o f has an absolutely
convergent Fourier series.

47



Uniform integrability in the Wiener algebra

Let A > 0, and set

Wi = {f(t) => e[ D [hMf| < oo}.

heZ heZ

A set F C W, is called uniformly integrable (in W), if

I|m sup Z |k|*|fie| = 0.

|k|>K

Question: Do analytic functions preserve uniform integrability?

48



Uniform Wiener-Levy theorem

Theorem

Let A >0, and F C W, be uniformly integrable. If H is an
analytic (not necessarily single-valued) function which is regular at
every point of | J;.pim(f), then

H(F)={Hof |f € F}

is uniformly integrable in W,

49



Uniform Baxter inequalities

Theorem
Let (X, Yt(m))tez, be centered, jointly stationary processes for

m € M. If the family of spectral densities (™) of the Yt(m) 'sis
uniformly integrable in Wy, and

inf (M (t) > 0,
meM
te[0,27]

then there is a constant C > 0 and a kg > 0, such that for all
k > ko, m € M, and all non-decreasing functions g : N — (0, ),

k
> g()lal™ (k) — &™) < Ca(k) Zra ,
j=1

j=k+1

where al™ and a(™ (k) are the coefficients of the best
oo /k-dimensional linear model for X; based on Yt(m).
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