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Structure of the talk

Part 1: Why does the AIC work?

Part 2: Can we compare the AIC of two models?
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Why does the AIC work?



Motivation: Prediction Problem

Problem: Given X1, . . . ,Xn, predict Xn+1.

“Optimal” solution:

E(Xn+1 | X1, . . . ,Xn) = argmin
Z∈M(σ(X1,...,Xn))

E(Xn+1 − Z )2.

Classical approach: Fit linear models, i.e., predict Xn+1 using

Xn+1 ≈
k∑

j=1

âj(k)Xn+1−j .

Question: How do we pick k and â(k)? Does this work? What
does “work” mean in this context?

3



Motivation: Prediction Problem

Problem: Given X1, . . . ,Xn, predict Xn+1.

“Optimal” solution:

E(Xn+1 | X1, . . . ,Xn) = argmin
Z∈M(σ(X1,...,Xn))

E(Xn+1 − Z )2.

Classical approach: Fit linear models, i.e., predict Xn+1 using

Xn+1 ≈
k∑

j=1
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Two ways to measure success

1. Asymptotic efficiency:

Model selection-based prediction error

Optimal Oracle-based prediction error
P−−−→

n→∞
Efficiency ∈ [1,∞].

2. Sharp finite-sample oracle inequalities:

Model selection-based prediction error

≤ Optimal Oracle-based prediction error×
(
1 + o(1)

)
with high probability.
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Model selection via AIC

1. Choose Kn ∈ {1, . . . , n − 1}, and estimate â(k) for
k = 1, . . . ,Kn.

2. Choose the k = k̂n ∈ {1, . . . ,Kn} for which

AIC(k) = n log(σ̂2k) + 2k

is minimal, where

σ̂2k =
1

n − Kn

n∑
t=Kn+1

(
Xt −

k∑
j=1

âj(k)Xt−j

)2

.

3. Predict Xn+1 using

Xn+1 ≈
k̂n∑
j=1

âj(k̂n)Xn+1−j .
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Model selection via AIC

Problems:

1. Classical theory only covers linear processes? What about
other dynamics such as GARCH, Markov Chains, SDEs, etc?

2. Finite sample behavior?

3. Assumptions are currently not falsifiable.
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Table of Contents: Part 1

1. Setup and Oracle.

2. Model selection.

3. State of the art.

4. Contribution.
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Setup and Oracle



Setup

We are given a sample X1, . . . ,Xn from a stationary process
X = (Xt)t∈Z.

For t ∈ Z, let V = ⟨Xs | s < t⟩ ⊆ L2. Then

PV (Xt) =
∞∑
j=1

ajXt−j .

The vector a = (aj)j≥1 represents the best possible linear model.

Goal: Approximate a.
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Setup

For t, k ∈ N, we set Vk = ⟨Xt−1, . . . ,Xt−k⟩ ⊆ L2. We have

PVk (Xt) =
k∑

j=1

aj(k)Xt−j .

The vector a(k) = (a1(k), . . . ak(k))
T represents the best linear

model of dimension k .

Idea: Approximate a by a(k), and estimate a(k) from the data.
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Setup

Question: How do we estimate a(k)?

By Yule-Walker theory, we have

a(k) = argmin
b∈Rk

E
(
Xt −

k∑
j=1

bjXt−j

)2

= R(k)−1r(k),

where R(k) = (Rij)
k
i ,j=1, r(k) = (R0j)

k
j=1 and Rij = E(XiXj).

Use plug-in estimation!
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Setup: Estimating a(k)

For k = 1, . . . ,Kn, we set

â(k) = R̂(k)−1r̂(k),

where R̂(k) = (R̂ij)
k
i ,j=1, r̂(k) = (R̂0,j)

k
j=1 and

R̂ij =
1

n − Kn

n∑
t=Kn+1

Xt−iXt−j .

11



Recap

Sharp finite-sample oracle inequalities:

Model selection-based prediction error

≤ Optimal Oracle-based prediction error×
(
1 + o(1)

)
with high probability.

We have an estimator â(k) of a.

Question: Prediction error? Oracle?
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Prediction error and oracle

Question: How close is â(k) to a? What does “close” mean?

We measure in the intrinsic units of the process Xt , i.e., we use the
norm

∥z∥2R =
∞∑

i ,j=1

zizjRij ,

for z ∈ ℓ2.

Our prediction error is

Qn(k) = ∥a− â(k)∥2R .
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Prediction error and oracle

We have the following Bias-Covariance tradeoff

Qn(k) = ∥a− â(k)∥2R = ∥a− a(k)∥2R + ∥a(k)− â(k)∥2R .

The oracle is given by

Ln(k) = ∥a− a(k)∥2R + σ2
k

n − Kn
,

where σ2 = E
(
X0 −

∑∞
j=1 ajX−j

)2
, and the oracle model order is

any
k∗n ∈ argmin

1≤k≤Kn

Ln(k).
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Prediction error and oracle

Question: What does it mean to be an oracle?

Theorem (informal)
If the problem is well-posed (e.g. Kn → ∞), than for any sequence

k̃n of σ(X1, . . . ,Xn) measurable functions, and any ε > 0 we have

lim
n→∞

P
(
Qn(k̃n)

Ln(k∗n )
> 1− ε

)
= 1.

15



Model selection



AIC vs. BIC

True model among candidates?

Yes No

AIC may not select true model

AIC selects approximation of the

true model with asymptotically

optimal bias-variance tradeoff

BIC P(BIC selects true model) → 1
may yield

suboptimal approximation
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AIC and FPE

1969: Final Prediction Error (FPE)

FPE (k) =
n + k

n − k
σ̂2k ,

where

σ̂2k =
1

n − Kn

n∑
m=Kn+1

(
Xm −

k∑
j=1

âj(k)Xm−j

)2

1973/4: Akaike Information Criterion (AIC)

AIC (k) = n log(σ̂2k) + 2k .

Question: What guarantees do we have?
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Classical literature



Classical literature

1980: Justification of FPE, AIC (and other criteria) in a prediction
setting by R. Shibata in terms of asymptotic efficiency. Requires
the innovations et in

Xt =
∞∑
j=1

ajXt−j + et

to be i.i.d. Gaussian.

1995-2001: A. Karagrigoriou & S. Lee relax assumptions on et to
i.i.d. with finite 8th moments.

2003,2005: C.-K. Ing & C.-Z. Wei introduce same-realization
setting (still require i.i.d. innovations et).

2006: E. J. Candès (among others) popularizes usage of oracle
inequalities (see also [Barron, Birgé, and Massart, PTRF, 1999]).
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Classical literature: shortcomings

1. Innovations et need to be i.i.d. This excludes many frequently
used models (e.g. GARCH, Markov processes, SDEs, etc.).

2. Assumptions are imposed on the unobservable innovations et
(rather than Xt), and are thus impossible to check in practice.

3. No finite-sample oracle inequalities. Everything is purely
asymptotic.
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Contribution



Assumptions

Let (Xt)t∈Z be a stationary process. Then

1. E(Xt) = 0 and Xt ∈ Lq, for q > 8.

2. Xt does not degenerate to a finite order autoregressive
process.

3. The spectral density fX is (uniformly) bounded away from
zero.

4. Kn ∈ {1, . . . , n − 1} is a divergent sequence of integers, and
there is κ > 0 such that K 2+κ

n /n is bounded.

5. Xt is weakly (physically) dependent.
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Physical dependence: intuition

Goal: Measure temperature of gas.
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Physical Dependence

Let (εt)t∈Z be an E -valued i.i.d. sequence, gt : E
∞ → R

measurable.

We assume
Xt = gt(εt , εt−1, . . . ).

Remark. Starting from a general stationary process Xt , we may
end up with et = gt(εt , εt−1, . . . ), but we can restrict ourselves to
the case

Xt = g(εt , εt−1, . . . ).
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Physical Dependence
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Physical Dependence

23



Physical Dependence

To measure the degree of dependence among the Xt ’s, let (δt)t∈Z
be an i.i.d. copy of (εt)t∈Z and set

X ′
t = g(εt , . . . , ε1, δ0, ε−1, . . . ).

The quantity

Dq(α) =
∞∑
t=1

tα∥Xt − X ′
t∥q

measures the rate at which the process X forgets its past.
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Assumptions revisited

Let (Xt)t∈Z be a stationary process. Then

1. E(Xt) = 0 and Xt ∈ Lq, for q > 8.

2. Xt does not degenerate to a finite order autoregressive
process.

3. The spectral density fX is (uniformly) bounded away from
zero.

4. Kn ∈ {1, . . . , n − 1} is a divergent sequence of integers, and
there is κ > 0 such that K 2+κ

n /n is bounded.

5. Xt is weakly (physically) dependent, with α ≥ 5/2.
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Contribution

Theorem
Under the above assumptions, any sequence k̂n of minimizers of
AIC, FPE, Shibata’s Criterion (and more) satisfies

P
(∣∣∣∣Qn(k̂n)

Ln(k∗n )
− 1

∣∣∣∣ ≤ 8(k∗n )
−δ

)
≥ 1− C (k∗n )

−γ ,

for some C , δ, γ > 0, and k∗n → ∞.
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Examples

Examples include:

1. random walks on the regular group,

2. functionals of iterated random systems,

3. functionals of (augmented) GARCH models of any order,

4. functionals of (Banach space valued) linear processes,

5. solutions to many SDEs,

6. (in)finite memory Markov chains, and many more...
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Simulations

The innovations et follow a GARCH(0.25,0.25) model with
standard Gaussian innovations, that is,

et = εtLt ,

where εt is a sequence of i.i.d. standard Gaussian random
variables, and

L2t =
1

10
+

1

4
L2t−1 +

1

4
e2t−1.

The process we consider is given by

X
(p)
t = et +

∞∑
j=1

j−pet−j , p > 1.
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Simulations

Figure 1: Average model order selected by AIC for (X
(p)
s )ts=1 over 4000

runs, for various values of p and t = 41, . . . , 1840.
29



Can we compare the AIC of
two models?



Motivation: Compare AIC of two models?

Goal: Predict return Xn+1 of U.S. Treasury bonds X1, . . . ,Xn.

Problem: What do we use to predict Xn+1?

Only X1, . . . ,Xn? Inflation? GDP growth? Interest rates? Or a
combination of all of them?

Question: Can we use AIC to decide this question?
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Motivation: Compare AIC of two models?

Goal: Predict next data point Xn+1 from a time series (Xt)t∈Z.

Data: In addition to X1, . . . ,Xn, we are given two (or more) time
series Y1, . . . ,Yn and Z1, . . . ,Zn, which we can use to predict
Xn+1.

Question: Should we use Y1, . . . ,Yn or Z1, . . . ,Zn to predict
Xn+1? Which of the two approximations

Xt ≈
kY∑
j=1

aj(kY )Yt−j or Xt ≈
kZ∑
j=1

bj(kZ )Zt−j

is better?
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Motivation: Compare AIC of two models?

Part 1: Use AIC to select model order.

Part 2: Use AIC to select the model & model order.
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General strategy

We are given X1, . . . ,Xn, and Y
(m)
1 , . . . ,Y

(m)
n , for m = 1, . . . ,Mn,

and we want to predict Xn+1.

1. Predict Xn+1 using the Y (m)’s, for every m = 1, . . . ,Mn.

2. Compare all the AIC scores of those models.

3. Pick the m̂n ∈ {1, . . . ,Mn} and k̂n ∈ {1, . . . ,Kn} with the
smallest AIC score.

4. Predict Xn+1 via

Xn+1 ≈
k̂n∑
j=1

a(m̂n)(k̂n)Y
(m̂n)
n+1−j .

33



Setup

We are given (jointly stationary) random samples Y
(m)
1 , . . . ,Y

(m)
n

for m = 1, . . . ,Mn in addition to X1, . . . ,Xn, and are interested in
predicting Xn+1.

For every m = 1, . . . ,Mn, and t ∈ Z let V (m) = ⟨Y (m)
s | s < t⟩.

PV (m)(Xt) =
∞∑
j=1

a
(m)
j Y

(m)
t−j .

The vector a(m) = (a
(m)
j )j≥1 gives the best linear model for Xt

based on Y
(m)
t .

Idea: Approximate a(m) = (a
(m)
j )j≥1 and choose the model with

the smallest prediction error (in L2).
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Setup

For m = 1, . . . ,Mn, k = 1, . . . ,Kn, and t ∈ Z, set
V

(m)
k = ⟨Y (m)

t−j | j = 1, . . . , k⟩ ⊆ L2.

P
V

(m)

k
(Xt) =

k∑
j=1

a
(m)
j (k)Y

(m)
t−j ,

where a(m)(k) is the best k-dimensional model for Xt given

Y
(m)
t−1 , . . . ,Y

(m)
t−k .

Idea: Approximate a(m) by a(m)(k) and estimate a(m)(k) from the
data.
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Setup

We can use Yule-Walker theory for regression to compute a(m)(k):

a(m)(k) = R(m)(k)−1r (m)(k),

where

R(m)(k) =
(
E
(
Y

(m)
i Y

(m)
j

))k
i ,j=1

,

r (m)(k) = r (m)(k) =
(
E
(
XkY

(m)
k−1

)
, . . . ,E(XkY

(m)
1 )

)T
.
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Setup

For k = 1, . . . ,Kn, we estimate R(m)(k) and r (m)(k) via

R̂(m)(k) = (R̂
(m)
ij )ki ,j=1, and r̂ (m)(k) = (r̂

(m)
j )kj=1, where

R̂
(m)
ij =

1

n − Kn

n∑
t=Kn+1

Y
(m)
t−i Y

(m)
t−j , i , j = 1, . . . ,Kn

and

r̂
(m)
j =

1

n − Kn

n∑
t=Kn+1

XtY
(m)
t−j , j = 1, . . . ,Kn.
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Setup: Estimate

Estimate a(m)(k) via

â(m)(k) = R̂(m)(k)−1r̂ (m)(k).

We set

Q(m)(k) = ∥a(m) − â(m)(k)∥2R,m
= ∥a(m) − a(m)(k)∥2R,m + ∥a(m)(k)− â(m)(k)∥2R,m.

where

∥z∥2R,m =
∞∑

i ,j=1

zizjR
(m)
ij .
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Setup: Oracle

We define

L(m)
n (k) = ∥a(m) − a(m)(k)∥2R,m +

k

n − Kn
σ2m,

where

σ2m = E
(
Xt −

∞∑
j=1

a
(m)
j Y

(m)
t−j

)2

.

The oracle model m∗
n and the oracle model order k∗n are given by

(m∗
n, k

∗
n ) ∈ argmin

1≤k≤Kn
1≤m≤Mn

L(m)
n (k).
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Model selection

Define

σ̂2m(k) =
1

n − Kn

n∑
t=Kn+1

(
Xt −

k∑
j=1

â
(m)
j (k)Y

(m)
t−j

)2

,

and set

AIC(m, k) = n log(σ̂2m(k)) + 2k ,

FPE(m, k) =
n + k

n − k
σ̂2m(k).

Our estimators of m∗
n and k∗n are given by

(m̂n, k̂n) ∈ argmin
1≤k≤Kn
1≤m≤Mn

AIC(m, k).

Question: Does this work?
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Assumptions

Let (εt)t∈Z be an i.i.d. sequence, and assume that there are
functions g , and g (m) such that

Xt = g(εt , εt−1, . . . ), and

Y
(m)
t = g (m)(εt , εt−1, . . . ),

for m ≥ 1 and t ∈ Z. For α ≥ 0 we define

DX
q (α) =

∞∑
t=1

tα∥Xt − X ′
t∥q,

DY
q (α) = sup

m≥1

{
∥Y (m)∥q +

∞∑
t=1

tα∥Y (m)
t − (Y

(m)
t )′∥q

}
.

Recall: (δt) i.i.d. copy of (εt), X
′
t = g(εt , . . . , ε1, δ0, ε−1, . . . ) and

(Y
(m)
t )′ = g (m)(εt , . . . , ε1, δ0, ε−1, . . . ).
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Assumptions

Let (Xt ,Y
(m)
t )t∈Z be a centered, stationary process for all m ≥ 1.

For q > 8 and α ≥ 5/2 we assume:

1. Xt ,Y
(m)
t ∈ Lq for all m ≥ 1.

2. Xt ,Y
(m)
t are jointly phys. dep. with DX

q (α),DY
q (α) <∞.

3. There is a cs > 0 such that the spectral densities f (m) of Y
(m)
t

satisfy f (m) ≥ cs for all m ≥ 1.

4. The sequence a(m) is not eventually zero for any m ≥ 1.
5. The sequences Kn ∈ {1, . . . , n− 1} and Mn ∈ N are divergent,

and there is κ > 0 such that K 2+κ
n /n is bounded,

Mn/K
2α
n → 0, and KnMn/n → 0.

6. There is a ψ > 0, and a n0 ≥ 1, such that for all n ≥ n0

σ2m∗
n
≤ inf

1≤m≤Mn
m ̸=m∗

n

σ2m − n−1/2 log1/2+ψ(n).
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Contribution

Theorem
Given the previous assumptions, any sequence of minizers (m̂n, k̂n)
of AIC, FPE, Shibata’s Criterion (and more) satisfies

P
(∣∣∣∣Q(m̂n)(k̂n)

L
(m∗

n )
n (k∗n )

− 1

∣∣∣∣ ≤ 8(k∗n )
−δ

)
≥ 1− C (k∗n )

−γ ,

for some C , δ, γ > 0.
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The argument
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Wiener-Levy Theorem

Theorem
Let f (t) =

∑
h∈Z fhe

iht : [0, 2π] → C such that
∑

h∈Z |fh| <∞,
and H is an analytic (not necessarily single-valued) function which
is regular at every point of im(f ), then H ◦ f has an absolutely
convergent Fourier series.
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Uniform integrability in the Wiener algebra

Let λ ≥ 0, and set

Wλ =

{
f (t) =

∑
h∈Z

fhe
iht

∣∣ ∑
h∈Z

|h|λ|fh| <∞
}
.

A set F ⊆ Wλ is called uniformly integrable (in Wλ), if

lim
K→∞

sup
f ∈F

∑
|k|>K

|k |λ|fk | = 0.

Question: Do analytic functions preserve uniform integrability?
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Uniform Wiener-Levy theorem

Theorem
Let λ ≥ 0, and F ⊆ Wλ be uniformly integrable. If H is an
analytic (not necessarily single-valued) function which is regular at
every point of

⋃
f ∈F im(f ), then

H(F ) = {H ◦ f | f ∈ F}

is uniformly integrable in Wλ.
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Uniform Baxter inequalities

Theorem

Let (Xt ,Y
(m)
t )t∈Z, be centered, jointly stationary processes for

m ∈ M. If the family of spectral densities f (m) of the Y
(m)
t ’s is

uniformly integrable in W0, and

inf
m∈M

t∈[0,2π]

f (m)(t) > 0,

then there is a constant C > 0 and a k0 > 0, such that for all
k ≥ k0, m ∈ M, and all non-decreasing functions g : N → (0,∞),

k∑
j=1

g(j)|a(m)
j (k)− a

(m)
j | ≤ Cg(k)

∞∑
j=k+1

|a(m)
j |,

where a(m) and a(m)(k) are the coefficients of the best

∞/k-dimensional linear model for Xt based on Y
(m)
t .

50


	Why does the AIC work?
	Setup and Oracle
	Model selection
	Classical literature
	Contribution
	Can we compare the AIC of two models?

