Robustness of OLS to sample removals: theoretical analysis and implications

Boaz Nadler

Weizmann Institute of Science, Israel

Joint work with
Michael Feldman and Eyar Azar

Vienna, Sep. 2025

- Trust in a learned model; specifically its robustness to removal of few samples

- Trust in a learned model; specifically its robustness to removal of few samples
- Most influential subset selection problem / robustness auditing

- Trust in a learned model; specifically its robustness to removal of few samples
- Most influential subset selection problem / robustness auditing
- A real data example

- Trust in a learned model; specifically its robustness to removal of few samples
- Most influential subset selection problem / robustness auditing
- A real data example
- Theoretical analysis of robustness auditing for ordinary least squares

- Trust in a learned model; specifically its robustness to removal of few samples
- Most influential subset selection problem / robustness auditing
- A real data example
- Theoretical analysis of robustness auditing for ordinary least squares
- Revisit the real data example

- Trust in a learned model; specifically its robustness to removal of few samples
- Most influential subset selection problem / robustness auditing
- A real data example
- Theoretical analysis of robustness auditing for ordinary least squares
- Revisit the real data example
- Insights and implications

Standard workflow of supervised learning:

Standard workflow of supervised learning:

Input:

training set of n samples (\mathbf{x}_i, y_i) , i = 1, ..., n

Standard workflow of supervised learning:

Input:

training set of n samples (\mathbf{x}_i, y_i) , i = 1, ..., n

Goal:

construct a predictor for the response y for new \mathbf{x} 's whose responses y are not observed

Standard workflow of supervised learning:

Input:

training set of n samples (\mathbf{x}_i, y_i) , $i = 1, \ldots, n$

Goal:

construct a predictor for the response y for new \mathbf{x} 's whose responses y are not observed

Focus in this talk: regression setting

Standard workflow of supervised learning:

Input:

training set of
$$n$$
 samples (\mathbf{x}_i, y_i) , $i = 1, \ldots, n$

Goal:

construct a predictor for the response y for new \mathbf{x} 's whose responses y are not observed

Focus in this talk: regression setting

$$\mathbf{x} \in \mathbb{R}^p$$
 $y \in \mathbb{R}$

Standard workflow of supervised learning:

Input:

training set of
$$n$$
 samples (\mathbf{x}_i, y_i) , $i = 1, ..., n$

Goal:

construct a predictor for the response y for new \mathbf{x} 's whose responses y are not observed

Focus in this talk: regression setting

$$\mathbf{x} \in \mathbb{R}^p$$
 $y \in \mathbb{R}$

Assume:

p = number of features < n = number of samples

X - $n \times p$ matrix of all sample is of full rank p

Predictor f often found by choosing a loss function ℓ , and minimizing empirical risk over some class of functions \mathcal{F} ,

Predictor f often found by choosing a loss function ℓ , and minimizing empirical risk over some class of functions \mathcal{F} ,

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$

Predictor f often found by choosing a loss function ℓ , and minimizing empirical risk over some class of functions \mathcal{F} ,

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$

Example: Squared loss combined with class \mathcal{F} of linear functions gives *ordinary least squares*,

$$\hat{f}(\mathbf{x}) = \widehat{\boldsymbol{\beta}}^{\top} \mathbf{x}$$

Predictor f often found by choosing a loss function ℓ , and minimizing empirical risk over some class of functions \mathcal{F} ,

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(\mathbf{x}_i))$$

Example: Squared loss combined with class \mathcal{F} of linear functions gives *ordinary least squares*,

$$\hat{f}(\mathbf{x}) = \widehat{\boldsymbol{\beta}}^{\top} \mathbf{x}$$

where

$$\widehat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}\boldsymbol{y}$$

Can we trust learned model / its predictions?

Can we trust learned model / its predictions?

Accuracy of predictions: cross validation, conformal prediction

Can we trust learned model / its predictions?

Accuracy of predictions: cross validation, conformal prediction

Accuracy of estimated model parameters: asymptotic confidence intervals, bootstrap.

Can we trust learned model / its predictions?

Accuracy of predictions: cross validation, conformal prediction

Accuracy of estimated model parameters: asymptotic confidence intervals, bootstrap.

Robustness: detection of outliers, or very influential (individual) samples.

Can we trust learned model / its predictions?

Accuracy of predictions: cross validation, conformal prediction

Accuracy of estimated model parameters: asymptotic confidence intervals, bootstrap.

Robustness: detection of outliers, or very influential (individual) samples.

In the statistics literature: long history of works under umbrella of Robustness Diagnostics

In past few years, several researchers noted that in various datasets, removing a *small* number $k \ll n$ of (specifically chosen) training samples leads to *large* changes in the learned model,

In past few years, several researchers noted that in various datasets, removing a *small* number $k \ll n$ of (specifically chosen) training samples leads to *large* changes in the learned model, very different predictions and/or estimated coefficients

In past few years, several researchers noted that in various datasets, removing a *small* number $k \ll n$ of (specifically chosen) training samples leads to *large* changes in the learned model,

very different predictions and/or estimated coefficients

Example: For OLS, let $S \subset [n]$ be remaining set of samples after removal of k specific samples, |S| = n - k,

$$\widehat{\boldsymbol{\beta}}_{\mathcal{S}} = \left(\boldsymbol{X}_{\mathcal{S}}^{\top}\boldsymbol{X}_{\mathcal{S}}\right)^{-1}\boldsymbol{X}_{\mathcal{S}}^{\top}\boldsymbol{y}_{\mathcal{S}}.$$

In past few years, several researchers noted that in various datasets, removing a *small* number $k \ll n$ of (specifically chosen) training samples leads to *large* changes in the learned model,

very different predictions and/or estimated coefficients

Example: For OLS, let $S \subset [n]$ be remaining set of samples after removal of k specific samples, |S| = n - k,

$$\widehat{\boldsymbol{\beta}}_{\mathcal{S}} = \left(X_{\mathcal{S}}^{\top} X_{\mathcal{S}} \right)^{-1} X_{\mathcal{S}}^{\top} \mathbf{y}_{\mathcal{S}}.$$

If for a specific coefficient $j \in [p]$, with $k \ll n$ samples removed,

$$\widehat{oldsymbol{eta}}_j > 0$$
 but $(\widehat{oldsymbol{eta}}_{\mathcal{S}})_j < 0$

our trust in the model may be questionable

In recent years several authors emphasized the need to assess how subsets of training samples collectively affect a learned model,

In recent years several authors emphasized the need to assess how subsets of training samples collectively affect a learned model,

- Koh et al, On the accuracy of influence functions for measuring group effects, NeurIPS 19'
- Basu et al, On second-order group influence functions for black-box predictions, ICML 20'
- Hu et al, Most influential subset selection: Challenges, promises, and beyond, NeurIPS 24'

In recent years several authors emphasized the need to assess how subsets of training samples collectively affect a learned model,

- Koh et al, On the accuracy of influence functions for measuring group effects, NeurIPS 19'
- Basu et al, On second-order group influence functions for black-box predictions, ICML 20'
- Hu et al, Most influential subset selection: Challenges, promises, and beyond, NeurIPS 24'

Broderick et al, 2020, considered a more stringent (worst-case) form of robustness, called robustness auditing:

In recent years several authors emphasized the need to assess how subsets of training samples collectively affect a learned model,

- Koh et al, On the accuracy of influence functions for measuring group effects, NeurIPS 19'
- Basu et al, On second-order group influence functions for black-box predictions, ICML 20'
- Hu et al, Most influential subset selection: Challenges, promises, and beyond, NeurIPS 24'

Broderick et al, 2020, considered a more stringent (worst-case) form of robustness, called robustness auditing:

estimated parameters / predictions need to be robust to removal of *any* subset of k samples

[Rubinstein and Hopkins 25']

Definition (OLS): Robustness of $\widehat{\beta}$ to k sample removals in a fixed direction \mathbf{v} is measured by

$$\Delta_k(\mathbf{v}) = \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| = n - k} \langle \widehat{eta} - \widehat{eta}_{\mathcal{S}}, \mathbf{v} \rangle$$

[Rubinstein and Hopkins 25']

Definition (OLS): Robustness of $\widehat{\beta}$ to k sample removals in a fixed direction \mathbf{v} is measured by

$$\Delta_k(\mathbf{v}) = \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| = n-k} \langle \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{\mathcal{S}}, \mathbf{v} \rangle$$

In particular $\Delta_k(e_j)$ measures sensitivity of j-th coefficient to removal of k samples.

[Rubinstein and Hopkins 25']

Definition (OLS): Robustness of $\widehat{\beta}$ to k sample removals in a fixed direction \mathbf{v} is measured by

$$\Delta_k(\mathbf{v}) = \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| = n-k} \langle \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{\mathcal{S}}, \mathbf{v} \rangle$$

In particular $\Delta_k(e_j)$ measures sensitivity of j-th coefficient to removal of k samples.

Key Questions:

- Practical: For a given dataset and a given k, how large can $\Delta_k(\mathbf{v})$ be ?

[Rubinstein and Hopkins 25']

Definition (OLS): Robustness of $\widehat{\beta}$ to k sample removals in a fixed direction \mathbf{v} is measured by

$$\Delta_k(\mathbf{v}) = \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| = n - k} \langle \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{\mathcal{S}}, \mathbf{v} \rangle$$

In particular $\Delta_k(e_j)$ measures sensitivity of j-th coefficient to removal of k samples.

Key Questions:

- Practical: For a given dataset and a given k, how large can $\Delta_k(\mathbf{v})$ be ?
- Theoretical: How large should we expect $\Delta_k(\mathbf{v})$ to be under reasonable assumptions about the data?

- Exact computation of $\Delta_k(\mathbf{v})$: $\binom{n}{k}$ subsets is computationally intractable

- Exact computation of $\Delta_k(\mathbf{v})$: $\binom{n}{k}$ subsets is computationally intractable

approximations as well as upper/lower bounds for $\Delta_k(\mathbf{v})$

Robustness Auditing

- Exact computation of $\Delta_k(\mathbf{v})$: $\binom{n}{k}$ subsets is computationally intractable

approximations as well as upper/lower bounds for $\Delta_k(\mathbf{v})$

- Broderick, T., Giordano, R., and Meager, AMIP, 20'
- Kuschnig, Zens and Cuaresma, 21'.
- Moitra and Rohatgi, 23'
- Rubinstein and Hopkins, ACRE, 25'

Robustness Auditing

- Exact computation of $\Delta_k(\mathbf{v})$: $\binom{n}{k}$ subsets is computationally intractable

approximations as well as upper/lower bounds for $\Delta_k(\mathbf{v})$

- Broderick, T., Giordano, R., and Meager, AMIP, 20'
- Kuschnig, Zens and Cuaresma, 21'.
- Moitra and Rohatgi, 23'
- Rubinstein and Hopkins, ACRE, 25'

Several of these works show that on various datasets, OLS is *not* robust to removal of even just a handful of samples.

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program 506 rural villages: 320 participated in program, 186 control group.

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program

506 rural villages: 320 participated in program, 186 control group.

Poor households in participating villages received financial support

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program 506 rural villages: 320 participated in program, 186 control group. Poor households in participating villages received financial support Effect of program estimated by a linear regression

$$y = \beta_0 + \beta_1 x_1 + \sum_{j=2}^{17} \beta_j x_j,$$

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program 506 rural villages: 320 participated in program, 186 control group. Poor households in participating villages received financial support Effect of program estimated by a linear regression

$$y = \beta_0 + \beta_1 x_1 + \sum_{j=2}^{17} \beta_j x_j,$$

response y - total household consumption in pesos,

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program 506 rural villages: 320 participated in program, 186 control group. Poor households in participating villages received financial support Effect of program estimated by a linear regression

$$y = \beta_0 + \beta_1 x_1 + \sum_{j=2}^{17} \beta_j x_j,$$

response y - total household consumption in pesos, x_1 - binary treatment variable (1 if village participated in Progresa), x_2, \ldots, x_{17} additional covariates of each household.

[Angelucci and De Giorgi 2009']

Econometric study on Mexico's progresa aid program 506 rural villages: 320 participated in program, 186 control group. Poor households in participating villages received financial support Effect of program estimated by a linear regression

$$y = \beta_0 + \beta_1 x_1 + \sum_{j=2}^{17} \beta_j x_j,$$

response y - total household consumption in pesos, x_1 - binary treatment variable (1 if village participated in Progresa), x_2, \ldots, x_{17} additional covariates of each household. In non-poor households, β_1 captures (indirect) effect of the

Progresa aid program.

Cash Transfers Dataset

Period	Poor	n	\widehat{eta}_1	AMIP
8	Υ	10781	16.53	225
8	Ν	4543	-5.53	5
9	Υ	9489	28.65	321
9	Ν	3769	23.19	21
10	Υ	10368	32.52	570
10	N	4191	21.12	26

6 rows: three time periods \times two groups (poor/non poor)

Cash Transfers Dataset

Period	Poor	n	\widehat{eta}_{1}	AMIP
8	Υ	10781	16.53	225
8	Ν	4543	-5.53	5
9	Υ	9489	28.65	321
9	Ν	3769	23.19	21
10	Υ	10368	32.52	570
10	N	4191	21.12	26

6 rows: three time periods \times two groups (poor/non poor) Column 5: size of smallest subset found by AMIP whose removal changes the sign of $\widehat{\beta}_1$

How come only k = 5 - 30 samples out of n > 4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

How come only k = 5 - 30 samples out of n > 4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

How come only k=5-30 samples out of n>4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

How come only k=5-30 samples out of n>4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

Theoretical analysis: robustness auditing of OLS

- Derive conditions (and understanding) when would OLS be provably robust to k-sample removals

How come only k=5-30 samples out of n>4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

- Derive conditions (and understanding) when would OLS be provably robust to k-sample removals
- conversely, when would OLS be provably non-robust to k sample removals

How come only k=5-30 samples out of n>4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

- Derive conditions (and understanding) when would OLS be provably robust to k-sample removals
- conversely, when would OLS be provably non-robust to k sample removals
- Revisit the cash transfer dataset and identify potential causes

How come only k=5-30 samples out of n>4000 can change the sign of an OLS coefficient? (even when it is considered as statistically significant by standard tests)

This talk:

- Derive conditions (and understanding) when would OLS be provably robust to k-sample removals
- conversely, when would OLS be provably non-robust to k sample removals
- Revisit the cash transfer dataset and identify potential causes
- Implications for practitioners

Question:

When would OLS be robust to removal of k samples?

Question:

When would OLS be robust to removal of k samples?

Assume samples (\mathbf{x}_i, y_i) are i.i.d. from joint distribution $P(\mathbf{x}, y)$,

Question:

When would OLS be robust to removal of k samples?

Assume samples (\mathbf{x}_i, y_i) are i.i.d. from joint distribution $P(\mathbf{x}, y)$,

Analyze two models for $P(\mathbf{x}, y)$:

Question:

When would OLS be robust to removal of k samples?

Assume samples (\mathbf{x}_i, y_i) are i.i.d. from joint distribution $P(\mathbf{x}, y)$,

Analyze two models for $P(\mathbf{x}, y)$:

- Model 1: General P with mild regularity conditions

Question:

When would OLS be robust to removal of k samples?

Assume samples (\mathbf{x}_i, y_i) are i.i.d. from joint distribution $P(\mathbf{x}, y)$,

Analyze two models for $P(\mathbf{x}, y)$:

- Model 1: General P with mild regularity conditions
- Model 2: Gaussian Linear Model.

OLS Robustness

Model 1 - General

 $P(\mathbf{x}, y)$ - probability distribution over \mathbb{R}^{p+1} such that

- 1. ${\bf x}$ is sub-Gaussian, zero mean, and has positive-definite covariance ${\bf \Sigma} = \mathbb{E}[{\bf x}{\bf x}^{\top}]$
- 2. y is sub-Gaussian

OLS Robustness

Model 2 - Gaussian Linear

 $y = \boldsymbol{\beta}^{\top} \cdot \mathbf{x} + \varepsilon$, where $\boldsymbol{\beta} \in \mathbb{R}^p$ is deterministic and

- 1. $\mathbf{x} \sim \mathcal{N}(0, \Sigma)$, $\Sigma \succ 0$ is positive definite
- 2. ε is sub-Gaussian, mean zero, and independent of x

Optimal prediction under squared loss is conditional mean

Optimal prediction under squared loss is *conditional mean* $\mathbb{E}[y \,|\, \mathbf{x}]$

Optimal prediction under squared loss is conditional mean

$$\mathbb{E}[y \mid \mathbf{x}]$$

Optimal OLS solution is

$$oldsymbol{eta}^{ extsf{OLS}} = \Sigma^{-1} \cdot \mathbb{E}[\mathbf{x}y]$$

Optimal prediction under squared loss is conditional mean

$$\mathbb{E}[y \mid \mathbf{x}]$$

Optimal OLS solution is

$$oldsymbol{eta}^{ exttt{OLS}} = \Sigma^{-1} \cdot \mathbb{E}[\mathbf{x} y]$$

The general model 1 is *mis-specified*, since $\mathbb{E}[y \mid \mathbf{x}]$ may be a non-linear function of \mathbf{x}

Optimal prediction under squared loss is conditional mean

$$\mathbb{E}[y \mid \mathbf{x}]$$

Optimal OLS solution is

$$oldsymbol{eta}^{ ext{OLS}} = \Sigma^{-1} \cdot \mathbb{E}[\mathbf{x} y]$$

The general model 1 is *mis-specified*, since $\mathbb{E}[y \mid \mathbf{x}]$ may be a non-linear function of \mathbf{x}

Under Gaussian-Linear Model 2, $oldsymbol{eta}^{ extsf{oLS}}=oldsymbol{eta}$

Theoretical Results under Model 1

Sub-Gaussian norm of *y*:

$$||y||_{\psi_2} = \inf \{t > 0 : \mathbb{E}[\exp(|y|^2/t^2)] \le e\}.$$

Theoretical Results under Model 1

Sub-Gaussian norm of y:

$$||y||_{\psi_2} = \inf \{ t > 0 : \mathbb{E}[\exp(|y|^2/t^2)] \le e \}.$$

Sub-Gaussian norm of vector x:

$$\|\mathbf{x}\|_{\psi_2} = \sup_{\mathbf{v} \in \mathbb{S}^{p-1}} \|\mathbf{v}^{\top}\mathbf{x}\|_{\psi_2},$$

Non-asymptotic bound

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ i.i.d. from Model 1.

Non-asymptotic bound

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ i.i.d. from Model 1.

$\mathsf{Theorem}$

Assume $k \le n/2$, $p \le n - k$, and define

$$\eta = \|\boldsymbol{\Sigma}^{-1/2}\| \Big(1 + \|\boldsymbol{\Sigma}^{-1/2}\mathbf{x}\|_{\psi_2}^4 \Big) \|\boldsymbol{y}\|_{\psi_2}^2.$$

There exist constants C, c > 0 such that with probability at least $1 - 7(n/k)^{-ck}$.

$$\max_{\mathcal{S} \subseteq [n]: |\mathcal{S}| \ge n-k} \|\widehat{\boldsymbol{\beta}}_{\mathcal{S}} - \widehat{\boldsymbol{\beta}}\| \le C\eta \sqrt{\frac{k \log(en/k)}{n-k}}$$

for all p, n, k satisfying

$$\|C\|\Sigma^{-1/2}\mathbf{x}\|_{\psi_2}^2\sqrt{rac{p}{n-k}}\leq 1.$$

18/36

OLS Robustness Under Model 1

Asymptotics as $n \to \infty$, $k = k_n$ and $p = p_n$ may tend to infinity.

OLS Robustness Under Model 1

Asymptotics as $n \to \infty$, $k = k_n$ and $p = p_n$ may tend to infinity.

Assume $\|\Sigma^{-1/2}\|$, $\|\mathbf{x}\|_{\psi_2}$, and $\|y\|_{\psi_2}$ remain bounded as $n \to \infty$.

Asymptotics as $n \to \infty$, $k = k_n$ and $p = p_n$ may tend to infinity.

Assume $\|\Sigma^{-1/2}\|$, $\|\mathbf{x}\|_{\psi_2}$, and $\|y\|_{\psi_2}$ remain bounded as $n \to \infty$.

Theorem

 $(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n)$ i.i.d. from Model 1. Assume that as $n\to\infty$, $\limsup \|\Sigma^{-1/2}\mathbf{x}\|_{\psi_2}^2 \sqrt{p/n} < c$, where c>0 is an absolute constant. Then, if $\mathbf{k}/n\to0$,

$$\max_{\mathcal{S}\subseteq[n],|\mathcal{S}|\geq n-k}\|\widehat{\boldsymbol{\beta}}_{\mathcal{S}}-\widehat{\boldsymbol{\beta}}\|\xrightarrow{p}0$$

In simple words: for "well-behaved" data, if $k/n \to 0$, OLS is robust to k sample removals, regardless of model mis-specification, and regardless of data dimension.

In simple words: for "well-behaved" data, if $k/n \to 0$, OLS is robust to k sample removals, regardless of model mis-specification, and regardless of data dimension.

In fact, theorem allows $p \to \infty$ provided that $p/n \to 0$, as in this case the condition of the theorem is satisfied.

In simple words: for "well-behaved" data, if $k/n \to 0$, OLS is robust to k sample removals, regardless of model mis-specification, and regardless of data dimension.

In fact, theorem allows $p \to \infty$ provided that $p/n \to 0$, as in this case the condition of the theorem is satisfied.

Robustness measure $\Delta_k(\mathbf{v})$ converges to zero, uniformly in \mathbf{v} :

$$\Delta_k(\mathbf{v}) = \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| = n-k} \langle \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{\mathcal{S}}, \mathbf{v} \rangle \leq \max_{\mathcal{S} \subseteq [n], |\mathcal{S}| \geq n-k} \|\widehat{\boldsymbol{\beta}}_{\mathcal{S}} - \widehat{\boldsymbol{\beta}}\|.$$

Hence, if $k/n \rightarrow 0$,

$$\sup_{\boldsymbol{v}\in\mathbb{S}^{p-1}}\Delta_k(\boldsymbol{v})\stackrel{p}{\longrightarrow} 0.$$

Consistency under sample removals / Model 1

Theorem

Under same conditions above, and additional assumption that $\kappa(\Sigma)$ and $\|\beta\|$ remain bounded, as $n \to \infty$ and $(p+k)/n \to 0$,

$$\max_{\mathcal{S}\subseteq [n], |\mathcal{S}|\geq n-k} \|\widehat{\boldsymbol{\beta}}_{\mathcal{S}} - \boldsymbol{\beta}\| \xrightarrow{p} 0.$$

Consistency under sample removals / Model 1

Theorem

Under same conditions above, and additional assumption that $\kappa(\Sigma)$ and $\|\beta\|$ remain bounded, as $n \to \infty$ and $(p+k)/n \to 0$,

$$\max_{\mathcal{S}\subseteq[n],|\mathcal{S}|\geq n-k}\|\widehat{\boldsymbol{\beta}}_{\mathcal{S}}-\boldsymbol{\beta}\|\xrightarrow{p} 0.$$

Maximum number of samples that can be removed while keeping OLS error rate:

$$k \log \left(\frac{n}{k}\right) \ll \sqrt{p}$$

Robustness / Model 2

Robustness / Model 2

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ i.i.d. from Gaussian Linear Model 2.

Robustness / Model 2

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ i.i.d. from Gaussian Linear Model 2.

Theorem

There exist constants C, c > 0 such that if

$$Ck \le n, \quad t \ge 0, \quad \text{and} \quad \sqrt{\frac{p}{n-k}} + t < c,$$

then with probability at least $1 - 4e^{-c(n-k)t^2}$,

$$\max_{\substack{\mathcal{S}\subseteq[n],\\|\mathcal{S}|\geq n-k}}\|\widehat{\boldsymbol{\beta}}_{\mathcal{S}}-\boldsymbol{\beta}\|\leq C\|\Sigma^{-1/2}\|\|\boldsymbol{\varepsilon}\|_{\psi_2}\left(\frac{k\log n}{n-k}+\sqrt{\frac{p}{n-k}}+t\right)$$

Boaz Nadler

Robustness under Linear Model

We conjecture theorem is optimal up to logarithmic factors.

Robustness under Linear Model

We conjecture theorem is optimal up to logarithmic factors.

The error rate of $\max_{S\subseteq[n],|S|\geq n-k}\|\widehat{\beta}_S-\beta\|$ matches that of OLS on the full dataset if

$$k \ll \frac{\sqrt{np}}{\log n}$$

Robustness under Linear Model

We conjecture theorem is optimal up to logarithmic factors.

The error rate of $\max_{S\subseteq[n],|S|\geq n-k}\|\widehat{\beta}_S-\beta\|$ matches that of OLS on the full dataset if

$$k \ll \frac{\sqrt{np}}{\log n}$$

Under linear model, OLS can tolerate the removal of significantly more samples than under the general model

[Rubinstein and Hopkins, ICLR, 25'] ACRE= Algorithm for Certifying Robustness Efficiently

[Rubinstein and Hopkins, ICLR, 25']

ACRE= Algorithm for Certifying Robustness Efficiently

For a fixed \mathbf{v} , ACRE computes upper and lower bounds $U_k(\mathbf{v})$ and $L_k(\mathbf{v})$ such that without any modeling assumptions,

$$L_k(\mathbf{v}) \leq \Delta_k(\mathbf{v}) \leq U_k(\mathbf{v}).$$

Rubinstein and Hopkins derived following theoretical guarantee:

Rubinstein and Hopkins derived following theoretical guarantee: Under a variant of Model 2, with less restrictive conditions, there exists a threshold

$$K = \widetilde{\Theta}\left(\min\left(\frac{n}{\sqrt{p}}, \frac{n^2}{p^2}\right)\right)$$

such that for all $k \leq K$, with high probability,

$$\frac{U_k(\mathbf{v})}{L_k(\mathbf{v})} = 1 + \widetilde{O}\left(\frac{p + k\sqrt{p}}{n}\right).$$

Rubinstein and Hopkins derived following theoretical guarantee: Under a variant of Model 2, with less restrictive conditions, there exists a threshold

$$K = \widetilde{\Theta}\left(\min\left(\frac{n}{\sqrt{p}}, \frac{n^2}{p^2}\right)\right)$$

such that for all $k \leq K$, with high probability,

$$\frac{U_k(\mathbf{v})}{L_k(\mathbf{v})} = 1 + \widetilde{O}\left(\frac{p + k\sqrt{p}}{n}\right).$$

When $p + k\sqrt{p} \ll n$, the upper and lower bounds $U_k(\mathbf{v})$ and $L_k(\mathbf{v})$ are tight, so ACRE accurately measures robustness to removals.

Comparison to our theoretical results:

Comparison to our theoretical results:

Under model 2, OLS is *provably* robust to removals in a *broader* parameter regime $p + k \ll n$.

Comparison to our theoretical results:

Under model 2, OLS is *provably* robust to removals in a *broader* parameter regime $p + k \ll n$.

Open Question: whether the upper and lower bounds of ACRE remain tight in more general regimes, in particular where OLS is non-robust.

For the general model 1:

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For Gaussian linear model 2:

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For Gaussian linear model 2:

sharper results require more involved proof.

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For Gaussian linear model 2:

sharper results require more involved proof.

Careful use of Gaussian comparison inequalities

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For Gaussian linear model 2:

sharper results require more involved proof.

Careful use of Gaussian comparison inequalities

Open Question:

For the general model 1:

proof is "standard": based on concentration inequalities and union bounds.

For Gaussian linear model 2:

sharper results require more involved proof.

Careful use of Gaussian comparison inequalities

Open Question:

Derive robustness guarantees for other models

Non-robustness for $k \propto n$

$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$$
 i.i.d. from Model 2. Set $\alpha = k/n$.

Non-robustness for $k \propto n$

 $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ i.i.d. from Model 2. Set $\alpha = k/n$.

Theorem

Fix $\mathbf{v} \in \mathbb{S}^{p-1}$. Assume that p < k and $\gamma = p/(n-k) < 1/4$. There exist absolute constants C, c > 0 such that if $\alpha = k/n \le c$, then with probability at least $1 - 17e^{-c(n-k)t^2}$

$$\Delta_k(\mathbf{v}) \geq \left\| \Sigma^{-1/2} \mathbf{v} \right\| \left(\mathbb{E}[\varepsilon z \, \mathbb{1}(\varepsilon z > q_{1-lpha+t)})] - \frac{C(t+\sqrt{\gamma})}{(C-\sqrt{\gamma}-t)^2} \right),$$

for any $t \in (0, \min\{\alpha, 1/2 - \alpha\})$. Here, $z \sim \mathcal{N}(0, 1)$ is independent of ε , and $q_{1-\alpha+t}$ is the $(1-\alpha+t)$ -quantile of εz .

Boaz Nadler Robustness Auditing

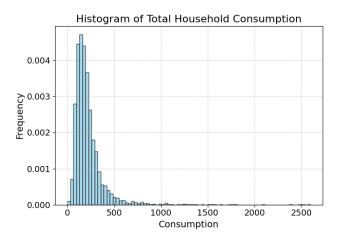
Robustness and Consistency Regimes for OLS / Model 2

Region	$k, p \ll n$	$k \ll n, p \asymp n$	$k \asymp n, p \ll n$	$k \asymp p \asymp n$
Robust	\checkmark	\checkmark	×	×
Consistent	✓	×	✓	×

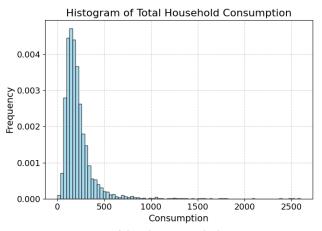
Response Y = total household consumption in pesos

Response Y= total household consumption in pesos In all 6 datasets, $\mathbb{E}[Y]\approx 200$, and $\mathrm{std}(Y)$ comparable to $\mathbb{E}[Y]$

Response Y= total household consumption in pesos In all 6 datasets, $\mathbb{E}[Y]\approx 200$, and $\mathrm{std}(Y)$ comparable to $\mathbb{E}[Y]$



Response Y = total household consumption in pesosIn all 6 datasets, $\mathbb{E}[Y] \approx 200$, and $\operatorname{std}(Y)$ comparable to $\mathbb{E}[Y]$

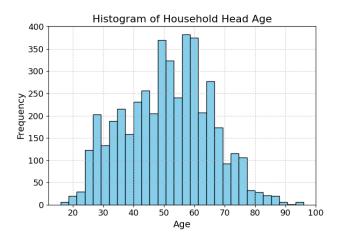


Cash Transfers Dataset

Explanatory variables x_1, \ldots, x_{17} are all "well-behaved", some are categorical,

Cash Transfers Dataset

Explanatory variables x_1,\ldots,x_{17} are all "well-behaved", some are categorical,



Cash Transfers Dataset

Period	Poor	n	\widehat{eta}_{1}	AMIP	μ_{y}	σ_{y}	$>$ 5 σ_y	$>$ $10\sigma_y$
8	Υ	10781	16.53	225	170	126	48	12
8	Ν	4543	-5.53	5	219	172	29	5
9	Υ	9489	28.65	321	176	182	48	15
9	Ν	3769	23.19	21	226	273	20	9
10	Υ	10368	32.52	570	172	156	56	13
10	N	4191	21.12	26	217	267	19	7

 μ_y and σ_y : empirical mean and standard deviation of response y. Last 2 columns: # samples larger than μ_y by $> 5\sigma_y$ or $> 10\sigma_y$

Cash Transfers Dataset

Period	Poor	n	\widehat{eta}_{1}	AMIP	μ_{y}	σ_{y}	$>$ 5 σ_y	$>$ $10\sigma_y$
8	Υ	10781	16.53	225	170	126	48	12
8	N	4543	-5.53	5	219	172	29	5
9	Υ	9489	28.65	321	176	182	48	15
9	Ν	3769	23.19	21	226	273	20	9
10	Υ	10368	32.52	570	172	156	56	13
10	N	4191	21.12	26	217	267	19	7

 μ_y and σ_y : empirical mean and standard deviation of response y. Last 2 columns: # samples larger than μ_y by $> 5\sigma_y$ or $> 10\sigma_y$ Y is extremely heavy tailed

Period	Poor	n	\widehat{eta}_{1}	AMIP	μ_{y}	$\mu_{\mathbf{y}}$ amip	$y_{\sf max}^{\sf AMIP}$
8	Υ	10781	16.53	225	170	572	4380
8	Ν	4543	-5.53	5	219	2018	2483
9	Υ	9489	28.65	321	176	580	5117
9	Ν	3769	23.19	21	226	2670	5801
10	Υ	10368	32.52	570	172	412	5080
10	N	4191	21.12	26	217	2154	7470

Period	Poor	n	\widehat{eta}_1	AMIP	μ_{y}	$\mu_{\mathbf{y}}$ amip	y_{max}^{AMIP}
8	Υ	10781	16.53	225	170	572	4380
8	Ν	4543	-5.53	5	219	2018	2483
9	Υ	9489	28.65	321	176	580	5117
9	Ν	3769	23.19	21	226	2670	5801
10	Υ	10368	32.52	570	172	412	5080
10	N	4191	21.12	26	217	2154	7470

AMIP removes samples with extreme Y values

Period	Poor	n	\widehat{eta}_1	AMIP	μ_{y}	μ_{y} amip	y_{max}^{AMIP}
8	Υ	10781	16.53	225	170	572	4380
8	N	4543	-5.53	5	219	2018	2483
9	Υ	9489	28.65	321	176	580	5117
9	Ν	3769	23.19	21	226	2670	5801
10	Υ	10368	32.52	570	172	412	5080
10	N	4191	21.12	26	217	2154	7470

AMIP removes samples with extreme Y values

Perhaps not surprising few samples suffice to reverse sign \hat{eta}_1

Suppose instead of OLS, we fit linear model under Huber loss

Suppose instead of OLS, we fit linear model under Huber loss

$$\widehat{oldsymbol{eta}}^{\mathsf{Huber}} = \operatorname*{\mathsf{argmin}}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n h_{ au}(oldsymbol{eta}^{ op} \mathbf{x}_i - y_i)$$

Suppose instead of OLS, we fit linear model under Huber loss

$$\widehat{oldsymbol{eta}}^{\mathsf{Huber}} = \operatorname*{\mathsf{argmin}}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n h_ au(oldsymbol{eta}^ op \mathbf{x}_i - y_i)$$

where h_{τ} is the Huber loss function, given by

$$h_{ au}(z) = egin{cases} rac{z^2}{2} & |z| \leq au, \ au\Big(|z| - rac{ au}{2}\Big) & |z| > au. \end{cases}$$

Suppose instead of OLS, we fit linear model under Huber loss

$$\widehat{oldsymbol{eta}}^{\mathsf{Huber}} = \operatorname*{\mathsf{argmin}}_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n h_ au(oldsymbol{eta}^ op \mathbf{x}_i - y_i)$$

where h_{τ} is the Huber loss function, given by

$$h_{ au}(z) = egin{cases} rac{z^2}{2} & |z| \leq au, \ au\Big(|z| - rac{ au}{2}\Big) & |z| > au. \end{cases}$$

au>0 controls the transition from squared loss to absolute loss. In our experiments we took au=1.

Period	Poor	n	\widehat{eta}_1	AMIP	\widehat{eta}_1^{Huber}	AMIP Huber
8	Υ	10781	16.53	225	16.55	725
8	Ν	4543	-5.53	5	-5.53	30
9	Υ	9489	28.65	321	27.92	915
9	Ν	3769	23.19	21	22.15	228
10	Υ	10368	32.52	570	31.31	1242
10	N	4191	21.12	26	19.06	217

Period	Poor	n	\widehat{eta}_1	AMIP	\widehat{eta}_1^{Huber}	AMIP Huber
8	Υ	10781	16.53	225	16.55	725
8	Ν	4543	-5.53	5	-5.53	30
9	Υ	9489	28.65	321	27.92	915
9	Ν	3769	23.19	21	22.15	228
10	Υ	10368	32.52	570	31.31	1242
10	N	4191	21.12	26	19.06	217

 $\widehat{\beta}_1$ and $\widehat{\beta}_1^{\mathsf{Huber}}$ -treatment effect under OLS and Huber regression

Period	Poor	n	\widehat{eta}_{1}	AMIP	\widehat{eta}_1^{Huber}	AMIP Huber
8	Υ	10781	16.53	225	16.55	725
8	Ν	4543	-5.53	5	-5.53	30
9	Υ	9489	28.65	321	27.92	915
9	Ν	3769	23.19	21	22.15	228
10	Υ	10368	32.52	570	31.31	1242
10	Ν	4191	21.12	26	19.06	217

 $\widehat{\beta}_1$ and $\widehat{\beta}_1^{\text{Huber}}$ -treatment effect under OLS and Huber regression Columns "AMIP" and "AMIP Huber": size of the smallest subset identified by AMIP whose removal reverses the sign of $\widehat{\beta}_1$ under each method.

Period	Poor	n	\widehat{eta}_{1}	AMIP	\widehat{eta}_1^{Huber}	AMIP Huber
8	Υ	10781	16.53	225	16.55	725
8	Ν	4543	-5.53	5	-5.53	30
9	Υ	9489	28.65	321	27.92	915
9	Ν	3769	23.19	21	22.15	228
10	Υ	10368	32.52	570	31.31	1242
10	N	4191	21.12	26	19.06	217

 \widehat{eta}_1 and $\widehat{eta}_1^{\text{Huber}}$ -treatment effect under OLS and Huber regression Columns "AMIP" and "AMIP Huber": size of the smallest subset identified by AMIP whose removal reverses the sign of \widehat{eta}_1 under each method.

Assuming AMIP approximation is accurate Huber regression substantially more robust

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.
- Presented theoretical analysis of robustness auditing for OLS.

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.
- Presented theoretical analysis of robustness auditing for OLS.
- Well behaved data and $k \ll n$, OLS is provably robust to sample removals.

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.
- Presented theoretical analysis of robustness auditing for OLS.
- Well behaved data and $k \ll n$, OLS is provably robust to sample removals.
- Implications: If removal of $k \ll n$ samples significantly changes linear model: need to carefully inspect potential reasons: heavy tails, outliers, non-i.i.d. data, etc.

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.
- Presented theoretical analysis of robustness auditing for OLS.
- Well behaved data and $k \ll n$, OLS is provably robust to sample removals.
- Implications: If removal of $k \ll n$ samples significantly changes linear model: need to carefully inspect potential reasons: heavy tails, outliers, non-i.i.d. data, etc.
- Multiple future directions: other models, less restrictive assumptions, heavy tailed distributions, outliers, etc.

- Robustness Auditing: important to enhance trust in a learned model. Framework goes beyond influence function of individual samples.
- Presented theoretical analysis of robustness auditing for OLS.
- Well behaved data and $k \ll n$, OLS is provably robust to sample removals.
- Implications: If removal of $k \ll n$ samples significantly changes linear model: need to carefully inspect potential reasons: heavy tails, outliers, non-i.i.d. data, etc.
- Multiple future directions: other models, less restrictive assumptions, heavy tailed distributions, outliers, etc.

Thank You!

