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- Trust in a learned model; specifically its robustness to removal of
few samples

- Most influential subset selection problem / robustness auditing
- A real data example

- Theoretical analysis of robustness auditing for ordinary least
squares

- Revisit the real data example

- Insights and implications
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Statistical Learning Paradigm

Standard workflow of supervised learning:

Input:
training set of n samples (x;,y;), i=1,...,n

Goal:
construct a predictor for the response y for new x's
whose responses y are not observed

Focus in this talk: regression setting

x € RP yeR

Assume:
p = number of features < n = number of samples
X - n x p matrix of all sample is of full rank p
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Predictor f often found by choosing a loss function ¢, and
minimizing empirical risk over some class of functions F,

= rgmmfZe (vir F(x0))

feF

Example: Squared loss combined with class F of linear functions
gives ordinary least squares,

where
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Trust in Learned Model

Can we trust learned model / its predictions?
Accuracy of predictions: cross validation, conformal prediction

Accuracy of estimated model parameters: asymptotic
confidence intervals, bootstrap.

Robustness: detection of outliers, or very influential (individual)
samples.

In the statistics literature: long history of works under umbrella of

Robustness Diagnostics
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Robustness Auditing

In past few years, several researchers noted that in various
datasets, removing a small number k < n of (specifically chosen)
training samples leads to /arge changes in the learned model,

very different predictions and/or estimated coefficients

Example: For OLS, let S C [n] be remaining set of samples after
removal of k specific samples, |S| = n — k,

2 -1
Bs = (Xd Xs)™ X4 ys-

If for a specific coefficient j € [p], with k < n samples removed,
B;>0 but (Bs); <0

our trust in the model may be questionable
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In recent years several authors emphasized the need to assess how
subsets of training samples collectively affect a learned model,

- Koh et al, On the accuracy of influence functions for measuring group
effects, NeurlPS 19’

- Basu et al, On second-order group influence functions for black-box
predictions, ICML 20’

- Hu et al, Most influential subset selection: Challenges, promises, and
beyond, NeurlPS 24’

Broderick et al, 2020, considered a more stringent (worst-case)
form of robustness, called robustness auditing:

estimated parameters / predictions need to be robust to removal of
any subset of k samples
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Most influential subset selection problem

__ [Rubinstein and Hopkins 25
Definition (OLS): Robustness of 3 to k sample removals in a
fixed direction v is measured by

Ag(v) = 3-8
V) = o max, (B Bsv)
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Most influential subset selection problem

__ [Rubinstein and Hopkins 25
Definition (OLS): Robustness of 3 to k sample removals in a
fixed direction v is measured by
Ay(v) = ma 3-8 ,V
()= max (B Bs.)
In particular Ax(ej) measures sensitivity of j-th coefficient to
removal of k samples.

Key Questions:

- Practical: For a given dataset and a given k, how large can
Ag(v) be ?

- Theoretical: How large should we expect Ax(v) to be under
reasonable assumptions about the data?
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Robustness Auditing

- Exact computation of Ay (v): (Z) subsets is computationallly
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Boaz Nadler Robustness Auditing 9/36



Robustness Auditing

- Exact computation of Ay (v): (Z) subsets is computationallly

intractable

approximations as well as upper/lower bounds for Ax(v)

Boaz Nadler Robustness Auditing 9/36



Robustness Auditing

- Exact computation of Ay (v): (Z) subsets is computationallly

intractable
approximations as well as upper/lower bounds for Ax(v)

- Broderick, T., Giordano, R., and Meager, AMIP, 20’
- Kuschnig, Zens and Cuaresma, 21'.
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Robustness Auditing

- Exact computation of Ay (v): (Z) subsets is computationallly

intractable
approximations as well as upper/lower bounds for Ax(v)

- Broderick, T., Giordano, R., and Meager, AMIP, 20’
- Kuschnig, Zens and Cuaresma, 21'.

- Moitra and Rohatgi, 23’

- Rubinstein and Hopkins, ACRE, 25’

Several of these works show that on various datasets, OLS is not
robust to removal of even just a handful of samples.
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Real Data Example: Cash transfers datasets

[Angelucci and De Giorgi 2009']
Econometric study on Mexico's progresa aid program
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Econometric study on Mexico's progresa aid program

506 rural villages: 320 participated in program, 186 control group.
Poor households in participating villages received financial support
Effect of program estimated by a linear regression

17
y=Bo+Bra+ > B,
j=2

response y - total household consumption in pesos,
x1 - binary treatment variable (1 if village participated in Progresa),
Xo,...,x17 additional covariates of each household.

Boaz Nadler Robustness Auditing 10/36



Real Data Example: Cash transfers datasets

[Angelucci and De Giorgi 2009']
Econometric study on Mexico's progresa aid program

506 rural villages: 320 participated in program, 186 control group.
Poor households in participating villages received financial support
Effect of program estimated by a linear regression

17
y = Bo+ Pix1 + Z/Bjxjv

Jj=2

response y - total household consumption in pesos,

x1 - binary treatment variable (1 if village participated in Progresa),
X2, . ..,x17 additional covariates of each household.

In non-poor households, (1 captures (indirect) effect of the
Progresa aid program.
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Cash Transfers Dataset

Period Poor n //3\1 AMIP

8 Y 10781 16.53 225
8 N 4543  -5.53 5
9 Y 0489 28.65 321
9 N 3769 23.19 21
Y
N

10 10368 32.52 570
10 4191 21.12 26

6 rows: three time periods x two groups (poor/non poor)
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Period Poor n //3\1 AMIP

8 Y 10781 16.53 225
8 N 4543  -5.53 5
9 Y 0489 28.65 321
9 N 3769 23.19 21
Y
N

10 10368 32.52 570
10 4191 21.12 26

6 rows: three time periods x two groups (poor/non poor)
Column 5: size of smallest subset found by AMIP
whose removal changes the sign of 3;
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Some Questions

How come only k =5 — 30 samples out of n > 4000 can change
the sign of an OLS coefficient? (even when it is considered as
statistically significant by standard tests)
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Some Questions

How come only k =5 — 30 samples out of n > 4000 can change
the sign of an OLS coefficient? (even when it is considered as
statistically significant by standard tests)

This talk:
Theoretical analysis: robustness auditing of OLS

- Derive conditions (and understanding) when would OLS be
provably robust to k-sample removals

- conversely, when would OLS be provably non-robust to k sample
removals

- Revisit the cash transfer dataset and identify potential causes

- Implications for practitioners
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Robustness Auditing of OLS
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When would OLS be robust to removal of k samples?
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Robustness Auditing of OLS

Question:
When would OLS be robust to removal of k samples?

Assume samples (x;,y;) are i.i.d. from joint distribution P(x,y),

Analyze two models for P(x, y):

- Model 1: General P with mild regularity conditions
- Model 2: Gaussian Linear Model.
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OLS Robustness

Model 1 - General

P(x, y) - probability distribution over RP*! such that

1. x is sub-Gaussian, zero mean, and has positive-definite
covariance ¥ = E[xx']

2. y is sub-Gaussian
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OLS Robustness

Model 2 - Gaussian Linear

y = ,BT - X + &, where 3 € RP is deterministic and
1. x ~N(0,X), X > 0 is positive definite

2. ¢ is sub-Gaussian, mean zero, and independent of x
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Preliminaries

Optimal prediction under squared loss is conditional mean

Ely |x]
Optimal OLS solution is

oLs _ z—l . E[Xy]

The general model 1 is mis-specified, since E[y | x| may be a
non-linear function of x

Under Gaussian-Linear Model 2, 8°° = 3
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Theoretical Results under Model 1

Sub-Gaussian norm of y:

I lly, = inf {t > 0: Efexp(|y[*/t?)] < e}.
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Theoretical Results under Model 1

Sub-Gaussian norm of y:
I lly, = inf {t > 0: Efexp(|y[*/t?)] < e}.
Sub-Gaussian norm of vector x:

T
X[l = sup [|v x]|y,,
veSp-1
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Non-asymptotic bound

(X1,¥1),- - (Xn, yn) i.i.d. from Model 1.
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Non-asymptotic bound

(X1,¥1),- - (Xn, yn) i.i.d. from Model 1.

Assume k < n/2, p < n— k, and define

n= =72 (1 + =723, ) I3,

There exist constants C,c > 0 such that with probability at least
1—7(n/k)=¢k,

k log(en/k)

Be— 3l < C
max k||5$ Bl < Cn p

SC[n):|S|>n—
for all p, n, k satisfying

clz—V22 . [P <1,
=423,/ <
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OLS Robustness Under Model 1

Asymptotics as n — oo, k = k, and p = p, may tend to infinity.
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OLS Robustness Under Model 1

Asymptotics as n — oo, k = k, and p = p, may tend to infinity.

Assume ||ZY/2||, |[x||y5,, and ||y|ly, remain bounded as n — cc.

Theorem

(X1,¥1), -+ (Xn, yn) i.i.d. from Model 1.
Assume that as n — oo, limsup ||Z_1/2x||i2\/p/n < ¢, where
¢ > 0 is an absolute constant. Then, if k/n — 0,

3 Y P
max — — 0
st 1Ps = Al
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OLS Robustness Under Model 1

In simple words: for “well-behaved” data, if k/n — 0, OLS is
robust to k sample removals, regardless of model mis-specification,
and regardless of data dimension.
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OLS Robustness Under Model 1

In simple words: for “well-behaved” data, if k/n — 0, OLS is
robust to k sample removals, regardless of model mis-specification,
and regardless of data dimension.

In fact, theorem allows p — oo provided that p/n — 0, as in this
case the condition of the theorem is satisfied.

Robustness measure Ax(v) converges to zero, uniformly in v:

- ) < Bs — 3.
A(v) Sg[nmgf;n_k<ﬁ Bs,v) —sg[nmEEn_k||ﬁ3 <]l

Hence, if k/n — 0,

sup Ag(v) 25 0.
vesp—1
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Consistency under sample removals / Model 1

Under same conditions above, and additional assumption that
k(X) and ||B|| remain bounded, as n — oo and (p + k)/n — 0,

A p
max — — 0.
sg[n],|5|2n_k”ﬁ3 Bl

Boaz Nadler Robustness Auditing 21 /36



Consistency under sample removals / Model 1

Theorem

Under same conditions above, and additional assumption that
k(X) and ||B|| remain bounded, as n — oo and (p + k)/n — 0,

= P
max — — 0.
st ni 1Ps = Al

Maximum number of samples that can be removed while keeping
OLS error rate:

klog <£> <P
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Robustness / Model 2
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Robustness / Model 2

(X1,¥1), -+ (Xn, yn) i.i.d. from Gaussian Linear Model 2.
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Robustness / Model 2

(X1,¥1), -+ (Xn, yn) i.i.d. from Gaussian Linear Model 2.

There exist constants C,c > 0 such that if

Ck<n, t>0, and L+t<c,
n—k

then with probability at least 1 — 4e—<(n—k)&*,

klogn P
— 8| < C||z1/2 t
max [1Bs — Bl < CIZ ™) e ||¢2( =T ,,_k+>

|S|>n—k
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Robustness under Linear Model

We conjecture theorem is optimal up to logarithmic factors.
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The error rate of maxscia],s|>n—k ||,§3 — (|| matches that of OLS
on the full dataset if

N

k <
log n
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Robustness under Linear Model

We conjecture theorem is optimal up to logarithmic factors.

The error rate of maxscia],s|>n—k ||BS — (|| matches that of OLS
on the full dataset if

N

k <
log n

Under linear model, OLS can tolerate the removal of significantly
more samples than under the general model
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On Theoretical Guarantees for ACRE

[Rubinstein and Hopkins, ICLR, 25']
ACRE= Algorithm for Certifying Robustness Efficiently
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On Theoretical Guarantees for ACRE

[Rubinstein and Hopkins, ICLR, 25']
ACRE= Algorithm for Certifying Robustness Efficiently

For a fixed v, ACRE computes upper and lower bounds Ux(v) and
Li(v) such that without any modeling assumptions,

Lk(V) S Ak(v) S Uk(V).
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On Theoretical Guarantees for ACRE

Rubinstein and Hopkins derived following theoretical guarantee:
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On Theoretical Guarantees for ACRE

Rubinstein and Hopkins derived following theoretical guarantee:
Under a variant of Model 2, with less restrictive conditions, there

exists a threshold
~ n n2
K= @<min <, >)
VP p?

such that for all k < K, with high probability,

L =1 o(7)
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On Theoretical Guarantees for ACRE

Rubinstein and Hopkins derived following theoretical guarantee:
Under a variant of Model 2, with less restrictive conditions, there

exists a threshold
~ n n2
K= @<min <, >)
VP p?

such that for all k < K, with high probability,
~ k
Uk(v) 140 p+kyp '
Lk(V) n

When p + k,/p < n, the upper and lower bounds Ui(v) and L(v)
are tight, so ACRE accurately measures robustness to removals.
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On Theoretical Guarantees for ACRE

Comparison to our theoretical results:
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Comparison to our theoretical results:

Under model 2, OLS is provably robust to removals in a broader
parameter regime p + k < n.
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On Theoretical Guarantees for ACRE

Comparison to our theoretical results:

Under model 2, OLS is provably robust to removals in a broader
parameter regime p + k < n.

Open Question: whether the upper and lower bounds of ACRE
remain tight in more general regimes, in particular where OLS is
non-robust.
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Proof Techniques

For the general model 1:

proof is “standard”: based on concentration inequalities and union
bounds.

For Gaussian linear model 2:
sharper results require more involved proof.

Careful use of Gaussian comparison inequalities

Open Question:
Derive robustness guarantees for other models
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Non-robustness for k oc n

(X1,¥1), -5 (Xn, yn) i.i.d. from Model 2. Set a = k/n.
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Non-robustness for k oc n

(X1,¥1), -5 (Xn, yn) i.i.d. from Model 2. Set a = k/n.

Theorem

Fix v € SP~L. Assume that p < k and v = p/(n— k) < 1/4.
There exist absolute constants C,c > 0 such that if « = k/n < c,
then with probability at least 1 — 17e—c(n—k)t*

for any t € (0, min{a, 1/2 — a}). Here, z ~ N(0,1) is
independent of €, and q1_q++ is the (1 — a + t)—quantile of ez.
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Robustness and Consistency Regimes for OLS / Model 2

Region k,p<gn k<np=xn kxnp<g<n kxpxn

Robust v v X X
Consistent ve X v X
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Response Y = total household consumption in pesos

Boaz Nadler Robustness Auditing 30/36



Cash Transfers Dataset Revisited

Response Y = total household consumption in pesos
In all 6 datasets, E[Y] & 200, and std(Y) comparable to E[Y]

Boaz Nadler Robustness Auditing 30/36



Cash Transfers Dataset Revisited

Response Y = total household consumption in pesos
In all 6 datasets, E[Y] & 200, and std(Y) comparable to E[Y]

Histogram of Total Household Consumption

0.004 -

Frequency
o
o
o
w

o
o
o
N

0.001 -

0.000 ’J o

500 1000 1500 2000 2500
Consumption

o4

Boaz Nadler Robustness Auditing 30/36



Cash Transfers Dataset Revisited

Response Y = total household consumption in pesos
In all 6 datasets, E[Y] & 200, and std(Y) comparable to E[Y]

Histogram of Total Household Consumption

0.004 -

Frequency
o
o
o
w

o
o
o
N

0.001 -

0.000 ’J o

500 1000 1500 2000 2500
Consumption

o4

Y is heavy tailed
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Cash Transfers Dataset

Explanatory variables x1, ..., x37 are all “well-behaved”, some are
categorical,
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Cash Transfers Dataset

Explanatory variables x1, ..., x37 are all “well-behaved”, some are
categorical,
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Cash Transfers Dataset

B

Period Poor n AMIP  pn, o, >bo, >100,
8 Y 10781 16.53 225 170 126 48 12
8 N 4543  -5.53 5 219 172 29 5
9 Y 9489 28.65 321 176 182 48 15
9 N 3769 2319 21 226 273 20 9
10 Y 10368 3252 570 172 156 56 13
10 N 4191 21.12 26 217 267 19 7

iy and o, empirical mean and standard deviation of response y.
Last 2 columns: # samples larger than u, by > 50, or > 100,
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Cash Transfers Dataset

n B1

Period Poor AMIP  pn, o, >bo, >100,
8 Y 10781 16.53 225 170 126 48 12
8 N 4543  -5.53 5 219 172 29 5
9 Y 9489 28.65 321 176 182 48 15
9 N 3769 2319 21 226 273 20 9
10 Y 10368 3252 570 172 156 56 13
10 N 4191 21.12 26 217 267 19 7

iy and o, empirical mean and standard deviation of response y.
Last 2 columns: # samples larger than u, by > 50, or > 100,

Y is extremely heavy tailed
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Which samples are removed by AMIP 7
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Period Poor n Bl AMIP — uy  pryame yhaMiP
8 Y 10781 16.53 225 170 572 4380
8 4543  -5.53 5 219 2018 2483

N

Y 9489 28.65 321 176 580 5117
9 N 3769 23.19 21 226 2670 5801

Y 10368 3252 570 172 412 5080

N 4191 21.12 26 217 2154 7470
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Which samples are removed by AMIP 7

Period Poor n Bl AMIP — uy  pryame yhaMiP
8 Y 10781 16.53 225 170 572 4380
8 4543  -5.53 5 219 2018 2483

N

Y 9489 28.65 321 176 580 5117
9 N 3769 23.19 21 226 2670 5801

Y 10368 3252 570 172 412 5080

N 4191 21.12 26 217 2154 7470

AMIP removes samples with extreme Y values

Perhaps not surprising few samples suffice to reverse sign Bl
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Robustness under Huber Loss

Suppose instead of OLS, we fit linear model under Huber loss
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Robustness under Huber Loss

Suppose instead of OLS, we fit linear model under Huber loss

n
B> = argmin (B x; - y;)
BeRrr

where h; is the Huber loss function, given by

z 2| < 7.
h(z) =< 2

T<|z\ — %) |z| > .
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Robustness under Huber Loss

Suppose instead of OLS, we fit linear model under Huber loss

n
B — argmin S h(87x; - )

BERP i—1

where h; is the Huber loss function, given by

22

Y |Z‘ S T,
h(z) =< 2

T<|z\ — %) |z| > .

7 > 0 controls the transition from squared loss to absolute loss.
In our experiments we took 7 = 1.
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Robustness of Huber vs. OLS

Period Poor  n Bi AMIP  jHuber  AMIP Huber

8 Y 10781 16.53 225 16.55 725
8 N 4543  -5.53 5 -5.53 30

9 Y 09489 28.65 321 27.92 915
9 N 3769 23.19 21 22.15 228
10 Y 10368 3252 570 31.31 1242
10 N 4191 21.12 26 19.06 217
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Robustness of Huber vs. OLS

Period Poor  n Bi AMIP  jHuber  AMIP Huber
8 Y 10781 1653 225 16.55 725
8 N 4543 553 5 553 30
9 Y 9489 28.65 321  27.92 915
9 N 3769 2319 21 2215 228
10 Y 10368 3252 570 31.31 1242
10 N 4191 2112 26  19.06 217

31 and B'l"'“be' -treatment effect under OLS and Huber regression

Columns “AMIP” and “AMIP Huber”:

size of the smallest subset

identified by AMIP whose removal reverses the sign of Bl under

each method.
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Robustness of Huber vs. OLS

Period Poor  n Bi AMIP  jHuber  AMIP Huber

8 Y 10781 16.53 225 16.55 725
8 N 4543  -5.53 5 -5.53 30

9 Y 09489 28.65 321 27.92 915
9 N 3769 23.19 21 22.15 228
10 Y 10368 3252 570 31.31 1242
10 N 4191 21.12 26 19.06 217

31 and B'l"'“be' -treatment effect under OLS and Huber regression
Columns “AMIP" and “AMIP Huber”: size of the smallest subset
identified by AMIP whose removal reverses the sign of 51 under
each method.

Assuming AMIP approximation is accurate

Huber regression substantially more robust
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Summary
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- Robustness Auditing: important to enhance trust in a learned
model. Framework goes beyond influence function of individual
samples.
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- Robustness Auditing: important to enhance trust in a learned
model. Framework goes beyond influence function of individual
samples.

- Presented theoretical analysis of robustness auditing for OLS.

- Well behaved data and k < n, OLS is provably robust to sample
removals.

- Implications: If removal of k < n samples significantly changes
linear model: need to carefully inspect potential reasons: heavy
tails, outliers, non-i.i.d. data, etc.

- Multiple future directions: other models, less restrictive
assumptions, heavy tailed distributions, outliers, etc.

Thank You !
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