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Feature space decomposition: idea 1/3

Consider N iid data in the linear regression model
Y = <X,,ﬁ*>+£,,lz 17"‘7/\/

where EX; =0, EX;X," = £, 8" € RP and E¢; = 0 ind. of X;.

Prediction = estimation

R(B) - R = =23 - 87).

N

where R(8) = E(Y — (X, 3))?

. 2
Our aim: obtain sharp bounds on H21/2(,6' - 8% , for classical

estimators fﬂ using the feature space decomposition method.
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Feature space decomposition: idea 2/3

Assume that the spectrum of ¥ is for 0 < e << 1

[ 1 if1<j<k
TTV e fk+1<j<p.

then for fa’ [3 ,Bka
B

|23 -8 = |Busc— B + € B~ B

2 . 5
"+ il

2 2
L+
2

< HBM — Bk

2 ~
22 ([P

where

> B — (. is the projection operator on Vi, = eigenspace of the top
k eigenvectors of ¥

» B — Byyi1,p is the projection on V1., = eigenspace of the last
p — k eigenvectors of ¥
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Feature space decomposition: idea 3/3

2
\ <
2

e * A * 2 2 2 * 2
Hzl/Q(ﬁ - B7) Bk — /31:kH2 + 262 ’ﬁk+l:pH2 + 262 H5k+1;p||2

> we don't expect Bk+1:p to estimate 3}, ., = we can use
Vi41:p to do something else than estimation

» we only need to pay the cost of estimation (sample size,
assumption on the model,..) only on the lower dimensional
space Vi instead of RP

signal alignement with top eigenvectors of the features

It will work
» under conditions on the spectrum of X

» if the signal B is mostly aligned with the top k eigenvectors
of
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FSD: properties of the projected design matrices
Decomposition of the design matrix
X
X= = Xl:k + Xk+1:p
Xy

where:
> X148 = XB;., is the design matrix on the estimation part Vi of
the feature space

» Xkt1p = XBy1., is the design matrix on 'free’ part Vi1, of the
feature space

We will need

> ‘classical’ properties for Xj.x required for estimation (control
of some quadratic and multiplier processes)

> 'new properties’ for X ;1.,: the Dvoretsky-Milman property
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The Dvoretzky-Milman theorem

Theorem (Dvoretsky-Milman with Gaussian random matrix)

There are absolute constants kpy < 1 and ¢; such that the fol-
lowing holds. Let ||-|| be some norm on RP and denote by B its
unit ball and B* its unit dual ball. Denote by G := G(N*P)| the
N X p standard Gaussian matrix with i.i.d. A(0,1) Gaussian en-
tries. Given any 0 < € < 1. Assume that N < kpyc’d.(B). Then
with probability at least 1 — exp(—ci€2d.(B)), for every XA € RV,

(1 =€) [[All £ <GTA|| < (X + ) IAll, £(B*)
where, the Dvoretsky-Milman dimension is

d.(B) = (M)z'

\. J

where ,(B*) = Esup,cg-(G,t) = E|[|G]| for G ~ N(0, ).

Task in progress for stat.: Extend this result beyond the Gaussian case.
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Application 1:
benign overfitting ot the minimum ¢$-norm
interpolant estimator

Bartlett, Long, Lugosi, Tsigler. Benign Overfitting in Linear Regression
Two surveys in Acta Numerica:
Bartlett, Montanari, Rahklin. Deep learning: a statistical viewpoint’

Belkin. Fit without fear: remarkable mathematical phenomena of deep learning..’



Double-descent and interpolant estimators

Classical Regime: Modern Regime:

Bias-Variance Tradeoff Larger Model is Better
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Nakkiran Et al..Deep double descent. 2021

The double descent phenomenon happens for over-parametrized models:

number of parameters >> number of data

and for interpolant estimators: | F(X;) = Y;,Vi=1,...,N.

How is it possible that interpolant estimators generalize well?
Because the |E uses the free part of the feature space to interpolate
the noise!
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Which interpolant estimators appear in neural networks?

Idea 1: For large models there are many interpolant estimators: not all
are good.

Idea 2: some algorithms used to train some wide neural networks tend to
interpolant estimators.

Key idea: in general, algorithms used to train neural networks do not use
an explicit regularization however they regularize implictly!

Implicit regularization / implicit bias toward smoothness

(informal) Proposition (implicit ¢;-regularization)

A SGD algorithm which interpolates the data at some point:
P stops its convergence, it becomes constant,

» equal to the interpolant estimator with the smallest £g-nom

Other algorithms are known to make implicit regularization
Vardi, Shamir, "implicit regularization in ReLu networks with square loss..’
Gunasekar, Lee, Soudry, Srebro, 'Characterizing Implicit bias in terms’...
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Understand explicit regularized IE in simple models

Linear regression model with (anisotropic) Gaussian design and
independent Gaussian noise: Y; = (X;,3") + &, i=1,..., N where
Xj ~ Np(0,%), B € RP and & ~ N(0,0%) ind. of X;. We note
51 X; &1
y=|:], x=[: |=GWPg2and¢=
YN Xy En
where G(V*P) is a N x p standard Gaussian matrix (i.i.d. N(0,1) entries).

The minimum ¢>-norm interpolant estimator is

ﬁ € argmin (|8, : XB =y)
BERP

Under which conditions the minimum ¢>-norm interpolant estimator
3 generalizes well in the Gaussian linear model?
Can we use the FSD to get sharp bounds for 37
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The FSD for the min-f>norm |E

RP = Vi @1 Vi
where
» V.. is spanned by the k* top singular vectors of
» Vj-i1.4 is spanned by the p — k™ smallest ones

for

Tr(X 1
k*—min{ke{l,...,p}:NSY(HLP)}
Ok+1

for the SVD, ¥ = Zf:l UjujujT,
k* p
Zl:k* = ZO'J'UJ'UJT and Zk*+1;p = Z O'J'UJ'UJT
j=1 j=k*+1
We have X = GIVXP)Y = Xy + Xy=41.p Where
Xppe = GV e and X1 = GNP e
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Two geometrical tools on V.« and Vi1,
* [RIP] if k* < N, then, w.h.p. for all v € Vj.«,

1/2 ‘ < Hxlzk*V”z H 1/2 ‘
Lfstee], < Bt <2
and if k* > ¢ N this holds only on the cone {Hzl oV ’ >r* Hv||2}

% [Dvoretsky-Milman] if

pe—1/2 Tr(Zk-11:p)
NS d* (X k*ilpo) Tﬂp

then w.h.p. for all X € RV,

TI'(Z[(*+1: ) 3 TY(Zk*+1: )
= A < e AL, < S5 1A,
and so, for A= X 1 (e 15X )
1 4
S Al < [[AAll; € —==—=—=All,-
2 Tr(zk*+1:p) Tr(zk*+1fp)
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Decomposition of the min-f>norm |E

We have 3 = Bl:k* + Bk*ﬂ:p where X = Xy« + Xy 41,5 and
Bra- € argmin (IA(y — Xui B)I3 + 181
BeRe

o 2 2
~ argmin (lly = Xuue- B + Te(Ee415) 1813)
D.M. BERP

where A = Xk*+1:pT(Xk*+1:pXk*+1:pT)_1 and
Bret1p = argg\in (”5”2 : Xp1pB =y — Xl:k*ﬁl:k*)

= Ay — Xk Brose)-

ﬁ = ﬁl:k* + ﬁk*+1:p
a 'ridge’ estimator on Vi, min [2 IE of the residuals of 3.
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Decomposition of the excess risk (general case)

Excess risk decomposition:

- 2

1/2 2 *
‘ +sz{f+1p IBk*+1:p - ﬁk*Jrl:p)H

1/2
= HZ1 K+ 51 K = Bliks) )

where

12
> =12 Brae - Bi)
the 'ridge’ estimator ﬁl:k*

2
’ = estimation part: (37.,. is estimated by
) :

2
12 2 . _
> sz£+1:p(lgk*+1:p — 52*+1:p)H2 = price for overfitting

1/2 ~ X 1/2 2 1/2 x
sz*+1:p(16k*+1:p - ﬂk*+1:p)“2 < sz*+1:pﬂk*+1:pH2+HZk*+1:p16k*+1:pH2

Conclusion 1: A large part of the space RP (i.e. Vj«11:p) is used to
interpolate the data.

Conclusion 2: Benign overfitting requires that the price for overfitting
on Vj,1., does not harm the estimation property of ﬁ
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Upper bound

Theorem (L. and Shang)

With probability at least 1 — exp(—cok™),

- 2 [ k* ~1/2 o Tr(Xie41:p)
Hzl/z(ﬂ - B%) ’2 S max{ag N’ ‘ZM{ Bk ) <Np )
NTr(Z2* . )
1/2 * k*+1:
“Zk*+l:p/6k*+1:p ;06 Tr2(2k+1:)}

It improves on Tsigler, Bartlett. 'Benign overfitting in ridge regression':
> deviation from constant to exponentially small
» remove unecessary conditions thanks to Dvoretsky-Milman theorem
» extend the range of application
» proof based on the FSD
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Matching lower bound
Theorem (L. and Shang)

If X is such that k* < N /4 then

k*
>m —
, "~ aX{Ung,

1/2 *
sz*Jrlzka*Jrl:p

2 <Tr(zlk\;+1:p)>

o NTI‘(Zi*Jrl:p) }
o 13 TI'2(Zk*+1;p)

E |23 - ) =561

It improves on the Bayesian lower bounds from
Bartlett, Long, Lugosi, Tsigler. 'Benign overfitting in linear regression’

and
Tsigler, Bartlett. 'Benign overfitting in ridge regression’
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Necessary and sufficient conditions for benign overfitting of
the min-/, interpolant estimator in linear regression

We say that overfitting is benign for the min-¢; IE when (X, 3") is s.t.

A) estimation happens on a small dimension space k*:

k* = o(N)

B) (0k*41,...,0p) is 'well-spread’ (i.e. it cannot be well approximated
by a N-sparse vector):

NTr(Zi*+1:p) =0 (T‘I‘(Zk*+1:p)2)

C) B" is mostly supported on the eigenspace of the top k* eigenvectors
of X:

1/2 *
“Zk<+1:pﬁk*+11p“2 = 0(1)

D) Okx >> O*y1:

2
|z, (B2 ) o)
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Extention to the heavy-tailed case

We obtain the same rate (but for a different deviation probability) when:

> X =3YY27 where Z is:

» symmetric with independent coordinates

» there is some o < 2 such that for all 2 < g < log N and all v € R?,
(X)), < Ca/* (X ),

» the noise ¢ is
» mean zero and independent of X

> there is some r > 4 such that [[£]|,, < CI£]|,,.
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Application 2:
kernel ridge regression

Tsigler, Bartlett. benign overfitting in ridge regression

Mourtada, J. and Rosasco, L. An elementary analysis of ridge regression with random
design.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. Linearized two-layers
neural networks in high dimension.

Liang and Rakhlin. Just Interpolate: Kernel "Ridgeless” Regression Can Generalize
Liang, Rakhlin, Zhai. On the Multiple Descent of Minimum-Norm Interpolants and
Restricted Lower Isometry of Kernels

Caron, Chrétien. A finite sample analysis of the benign overfitting phenomenon for

ridge function estimation



Application to kernel ridge regression — 1/2
We have N iid data in the model
Y = (X) + &= (o(X), f*) +¢

where f* € H a RKHS with kernel K : Q x Q — R where Q c R is
compact and ||K||, <1land ¢:x € Q— K(x,-) € H is the feature map.
The KRR with regularization parameter A\ > 0:

N
#\ € argmin (Z(Yl — f(X))?+ A ||f§{> :

feH e
We have
Ao=X] (XeX] + M)y
where
P(X1) " (O(X1), F)u f(X1)
Xy = : , so that Xyf = : = :

S(Xn)T W) Fa)  \FXn)
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Application to kernel ridge regression — 2/2

Theorem (Gavrilopoulos L. and Shang)

For ¥ = E¢(X) ® ¢(X), when N < (A + Tr(Zps41:p))/ 0k 41,

()\ + ’I‘T(Ek*«kl:p))

k*
< max{o
L~ { Vv

1/2
(A~

—-1/2
X Bl

b

A/j?r(f:k Sl p) }
TN T (The11p)

holds w.h.p. when the noise £ is mean zero, independent of X
and there is some r > 4 such that [|§]|, < CI[¢][,,; #(X) is such
that 3¢ > 0 s.t. for all f € H, [[f(X),,,.. < Clf(X),: some

conditions on the concentration of ||¢(X)],,...

.

Rem.: Matching lower bound in the Gaussian case; result true for all
A > 0; applications to the Gaussian equivalence conjecture and the
multiple descents phenomena.
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Decomposition of the KRR £,

We have f = fi., + )A‘k+1m where
F < argmin: (11Q (v =Kol + 113
and Q : RN — H;1.00 is such that
QT Q= (ch,kﬂ:xX@T.ka + )\/N)_l o (Tr(Thi1o0) +A)
hence
Fsc = argmin (Ily =Ko 3+ (T(Eicnoc) + A 15,
hence ﬁ:k is a “ridge” with tuning parameter A + Tr(X 4 1.o.) and

N 1 N
fit1:00 = X;kﬂ;oo (X¢,k+1:ooxl,k+1;oo + Aly) (y - qu,l:kfl:k)

= ridge with parameter \ for the residual y — X(/),l:k?l:k
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Application 3:
min-£4-norm interpolant estimators

Wang, Donhauser, Yang. Tight bounds for minimum {¢1-norm interpolation of noisy
data

Koehler, Zhou, Sutherland, Srebro. Uniform Convergence of Interpolators: Gaussian
Width, Norm Bounds, and Benign Overfitting



FSD and decomposition of min ¢, interpolant estimators
N iid data (X;, Y;) in the linear model Y = (X, 3") + . Let g > 1 and

Be argmin (||B||, : XB=y].
BERP (” I )
We have 3 = BJ + BJC where

B, € argmin (JlAly — X801 + 118119)
BERP
where A[u] € argmin <||1/||q (Xjev = ,u) and

BJC =Aly — XJBJ]
(ex. g = 1: BPDP); that is for a FSD
RP = RJ ®L ]RJC
and R’ = span(e; : j € J) and RY" = span(e;j : j € J) is adapted to the

canonical basis (¢));.
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FSD and Dvorestky-Milman

D.M. for XJ. = A is isomorphic to the {>-norm:

VA RN A, (2288 S |IX

1/2
Tl S 1Al 6(Z52B2)

||H||2 < ”-A[/'L]H < ||/J’||2

= VucRY: <
(=XBE 0. (Z?BE)

s Bq)

On the estimation part of the feature space f? behaves like
B, € argmin (Al — 3,818 + 1819
BERP
. 2
~argmin ([ly = 3,812 + .(E5°B2)7 18]
BERP

ie a regularized ERM wrt the square loss function to the power g and (7
regularization

> g = 1: square root LASSO of [Belloni, Chernozhukov and Wang]
> g =2: ridge
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Main result for the min ¢, 1 < g <2, IE

Assume that X = ¥1/2Z where ¥ is a diagonal matrix and Z has
independent coordinates such that
> Z_/c IS./\/(O7 I_/c)
» Z, is sub-gaussian;
if
U S NS Gd.(557B)

then w.h.p. HZ§/2(ﬁJ -8 5 r(Vy, Vjye) and

1

1= By — B2 S Hzl/zﬁjcl\z
—1

\FNZF(ZJECB;C% ) NEED (dlam(chBJ ))" )
LA q ,

+ (r(Vy, VJC)+U£)<

21 e1/2 o e 751 v1/2 b e
(B (B
where, for some interpolation norm |||, r(Vy, Vje) equals
g, By

‘ * * -2
+ Ve + 1\ oe T oe—o HﬁJ © 185 )H :

» Similar result for ¢ > 2 under a weaker moment condition on Z;.

Hzl/zﬁjc
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Application 4 (work in progress):
maximum margin interpolant estimator in
classification

Cao, Gu, Belkin. risk bounds for over-parametrized maximum margin classification
Shamir. The implicit bias of benign overfitting

Stojanovic, Donhauser, Yang. Tight bounds for maximum |1-margin classifiers



The max-margin |E and its decomposition

The minimum £p-norm/max-margin interpolant (linear) classifier (aka
hard margin support vectors machine) is

B € argmin (|8, : Vi € [N], Vi (X;,3) >1)
BERP
=argmin (|8, : X,8=1) =3, + 3,
BERP
where 1 = (1,1,--- , 1) e RV, X, = [V1.X1| -+ | YaXn] T,

BJC = B[l - XyBJ]-

where B[p] € argmin,, (||v|, : X, jev = ),
Xy e = [YiPyeXa| -+ | YnPseXn]" and

B, € argmin (||B[1 - Xy,Jﬂ]Hg + ||/3H§) :
BERP
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DM and the square hinge loss

D.M. for X ;o == B is isomorphic to the truncated f,-norm:

VA ERY: Al VIES) S XAl S Al vIEEA)

= VIJ‘ c RN . H[p‘]+”2 < HB[“']”Q < ||[p']+||2

V(X ) Tr(X )

where [uly = (max(u;,0)Y;, and X],. =
[YiPyeXa|- -+ [YnPyeXn].

B, e argmin (|1B[1-X,8,1I5 + 18,13)
BERP
. 2 2
~argmin (1L =X, 8,01 + Tr(Z.6) 18,13)
BERP

is a regularized ERM for a the square hinge loss and 3 regularization and
(3 e uses the free part of the FS to interpolate the data.
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Excess 0 — 1 risk decomposition
Setup: (X,Y) e RP x {-1,1},

*(x) = 2I(n(x) > 1/2) — 1 where n(x) = P[Y = 1|X = x].

( F(X) < 0) P(Yf*(X) <0) 0-1 excess risk
=P ( F(X) < ) P (Y?J(X) < 0) error on the 'free part of the FS’
+P ( Fi(X) < ) —P(Yf;(X) < 0) error on the estimation part
+P(Yf/(X)<0)—P(Yf*(X) <0) approximation error

where f = f, + f)c fora FSD RP = V, &+ V..
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Preliminary results in the Gaussian logistic model
X ~N(0,%) and, for u € RP,

1
1+exp(—2(X1p,x))

P(Y = 1|X = x) =

The Bayes rule is £*(-) = sign((8",-)) for 8" =L p.
If,

TI'(ZJc)

dim(V)) < N <42
(V))SNZS I

op

W.c.p. P/:g“} S8 ll2(r(Vy, Vie))? + 8 /tPTg5, when
“Zl/2ﬁj”2 > F(VJ, V_/c) for

dim(V))  Te(Zs) ..
(Vi Vi) = Py [N ) gy e fPt

Rem.: best FSD for V; = span(8*) (?)
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Feature space decomposition: take away message
The FSD method can be used to

» decrease the cost of uniform convergence: we only estimate over the
space R’
RP — R’

» understand new phenomenum like BO or revist old estimators thanks
to the 'free part’ of the feature space that allows estimators to do
something else than estimation!

freedom on R,
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Thanks!

» G. Lecué and Z. Shang. A geometrical viewpoint on the benign
overfitting property of the minimum [2-norm interpolant estimator.
PTRF24

» G. Gavrilopoulos, G. Lecué and Z. Shang. A Geometrical Analysis of
Kernel Ridge Regression and its Applications. AOS25

» G. Lecué and Z. Shang. A Geometric Viewpoint on the Benign
Overfitting Property of the Minimum {q-norm Interpolant Estimator
in Regression and Classification Problems. In preparation.
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benign overfitting: a high dimensional phenomenon?

Not all consistent interpolant estimators need high dimensional
spaces.
There are so far two types of interpolant estimators that generalize well:

> either you choose a minmax optimal estimator and you make small
perturbation of it around the data points so that it interpolates well

Belkin, Rakhlin and Tsybakov. Does data interpolation contradict
statistical optimality?

> or you look for a smooth estimator (even a linear one) and try to
make it going through the data: in that case,

being smooth and interpolant requires space: p >> N.
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What would do a statistician

A~ A statistician would not consider interpolant estimators (she/he would
do some threshold in the direction of small singular values to avoid useless
variance terms in directions where the signal B}., ., is not estimated)

A~ We study interpolant estimators because they appear naturally in deep
learning and they perform very well for some tasks.

A~ In the end, we have enough space to interpolate and the generalization
error ||£/2.||, does not put too much weights on this space so it does
not harm to use that space to interpolate the data and that is what the
min ¢>-norm interpolant estimator does.
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mini-batch SGD interpolator tends to the min-¢, IE

Let a loss function £: R x R — R and the mini-batch SGD algorithm

oY) = 9 — p, <|;‘, > au((8M, Xi), Y,-)x,->
t

icB,

with 600 = 0.

% For the square loss function: if at step T, Q(T) is interpolant (i.e.
<9(T)7Xi> = Y;,Vi) then for all t > T,8() = A(T) and

0D € argmin (||0]|, : (6, X;) = Y;,Vi) = XT(XXT) "ty
OcRrR
(also true if we only assume that 014(u, u) = 0).

% For any loss function: if X0(T) = y then it is equal to the min-f,-norm
estimator.
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The bias/variance approach in [TB] and [BLLT]

The minimum £-norm |E has a closed form:
B=X"(XXT)""y € argmin (|8],: X8 =y)
BERP
and so, for y = X3* + £, we have

-

< Hzl/z (xXT(XXT)IX - 1,)8"

(xxT) 15”

bias variance
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Application: multiple descents

For K(x,y) = h({x,y) /d) where h is a polynomial function.
Corollary (Gavrilopoulos L. and Shang)
Let (f)d, (td)d, (Ha)a be a sequence of target functions, sub-

Gaussian probability measures and RKHSs. As N,d — oo with
w(d") < N < o(d“*1),

1 s — P26 | = 0 (@) + 182, )

» Improve the intervale from wy (d“logd) < N < Oy (dt+1*50) to
w(d*) < N < o(d“t1).
» The first sub-Gaussian result in multiple descent.

> We do not require the assumptions Ehy(X) = Ef;(X) =0 as in
[Ghorbani et al., 2021]

> Unification between [Liang et al., 2020] and [Ghorbani et al., 2021].
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Application: multiple descents

L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

log(#parameters)/ log d

Figure: Taken from [Ghorbani et al., 2021]. Multiple descents caused by
HI'1>/L2 f2, 113, The effect of variance vanishes at limit.

39/40



Application: multiple descents

m.’»ly due o vorlance

Ci\/ /

>

o ... AL Al’?l dwa Ju;_,'ﬂ

Figure: Non-asymptotic viewpoint. The descent and ascent are because of the
variance o¢4/ % and o dL—"il, while the bottom of each valley is above

1/2
T2 113,
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