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Feature space decomposition: idea 1/3

Consider N iid data in the linear regression model

Yi =
〈
Xi ,β

∗〉+ ξi , i = 1, . . . ,N

where EXi = 0, EXiX
⊤
i = Σ, β∗ ∈ Rp and Eξi = 0 ind. of Xi .

Prediction = estimation

R(β̂)− R(β∗) =
∥∥∥Σ1/2(β̂ − β∗)

∥∥∥2
2

where R(β) = E(Y −
〈
X , β̂

〉
)2

Our aim: obtain sharp bounds on
∥∥∥Σ1/2(β̂ − β∗)

∥∥∥2
2
for classical

estimators β̂ using the feature space decomposition method.
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Feature space decomposition: idea 2/3

Assume that the spectrum of Σ is for 0 < ϵ << 1

σj =

{
1 if 1 ≤ j ≤ k
ϵ if k + 1 ≤ j ≤ p.

then for β̂ = β̂1:k + β̂k+1:p∥∥∥Σ1/2(β̂ − β∗)
∥∥∥2
2
=
∥∥∥β̂1:k − β∗

1:k

∥∥∥2
2
+ ϵ2

∥∥∥β̂k+1:p − β∗
k+1:p

∥∥∥2
2

≤
∥∥∥β̂1:k − β∗

1:k

∥∥∥2
2
+ 2ϵ2

(∥∥∥β̂k+1:p

∥∥∥2
2
+
∥∥β∗

k+1:p

∥∥2
2

)
where

▶ β → β1:k is the projection operator on V1:k = eigenspace of the top
k eigenvectors of Σ

▶ β → βk+1:p is the projection on Vk+1:p = eigenspace of the last
p − k eigenvectors of Σ
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Feature space decomposition: idea 3/3

∥∥∥Σ1/2(β̂ − β∗)
∥∥∥2
2
≤
∥∥∥β̂1:k − β∗

1:k

∥∥∥2
2
+ 2ϵ2

∥∥∥β̂k+1:p

∥∥∥2
2
+ 2ϵ2

∥∥β∗
k+1:p

∥∥2
2

Two ideas

▶ we don’t expect β̂k+1:p to estimate β∗
k+1:p ⇒ we can use

Vk+1:p to do something else than estimation

▶ we only need to pay the cost of estimation (sample size,
assumption on the model,..) only on the lower dimensional
space V1:k instead of Rp

signal alignement with top eigenvectors of the features

It will work

▶ under conditions on the spectrum of Σ

▶ if the signal β∗ is mostly aligned with the top k eigenvectors
of Σ
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FSD: properties of the projected design matrices

Decomposition of the design matrix

X =

X⊤
1
...

X⊤
N

 = X1:k + Xk+1:p

where:

▶ X1:kβ = Xβ1:k is the design matrix on the estimation part V1:k of
the feature space

▶ Xk+1:p = Xβk+1:p is the design matrix on ’free’ part Vk+1:p of the
feature space

We will need

▶ ’classical’ properties for X1:k required for estimation (control
of some quadratic and multiplier processes)

▶ ’new properties’ for Xk+1:p: the Dvoretsky-Milman property

5 / 40



The Dvoretzky-Milman theorem

Theorem (Dvoretsky-Milman with Gaussian random matrix)

There are absolute constants κDM ≤ 1 and c1 such that the fol-
lowing holds. Let ∥·∥ be some norm on Rp and denote by B its
unit ball and B∗ its unit dual ball. Denote by G := G(N×p), the
N × p standard Gaussian matrix with i.i.d. N (0, 1) Gaussian en-
tries. Given any 0 < ϵ ≤ 1. Assume that N ≤ κDMϵ2d∗(B). Then
with probability at least 1− exp(−c1ϵ

2d∗(B)), for every λ ∈ RN ,

(1− ϵ) ∥λ∥2 ℓ∗(B
∗) ≤

∥∥G⊤λ
∥∥ ≤ (1 + ϵ) ∥λ∥2 ℓ∗(B

∗)

where, the Dvoretsky-Milman dimension is

d∗(B) =

(
ℓ∗(B

∗)

diam(B∗, ℓp2)

)2

.

where ℓ∗(B
∗) = E supt∈B∗

〈
G , t

〉
= E ∥G∥ for G ∼ N (0, Ip).

Task in progress for stat.: Extend this result beyond the Gaussian case.
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Application 1:
benign overfitting ot the minimum ℓd2 -norm

interpolant estimator

Bartlett, Long, Lugosi, Tsigler. Benign Overfitting in Linear Regression

Two surveys in Acta Numerica:
Bartlett, Montanari, Rahklin. Deep learning: a statistical viewpoint’

Belkin. Fit without fear: remarkable mathematical phenomena of deep learning..’



Double-descent and interpolant estimators

Nakkiran Et al..Deep double descent. 2021

The double descent phenomenon happens for over-parametrized models:

number of parameters >> number of data

and for interpolant estimators: f̂ (Xi ) = Yi ,∀i = 1, . . . ,N.

How is it possible that interpolant estimators generalize well?
Because the IE uses the free part of the feature space to interpolate
the noise!
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Which interpolant estimators appear in neural networks?

Idea 1: For large models there are many interpolant estimators: not all
are good.
Idea 2: some algorithms used to train some wide neural networks tend to
interpolant estimators.
Key idea: in general, algorithms used to train neural networks do not use
an explicit regularization however they regularize implictly!

Implicit regularization / implicit bias toward smoothness

(informal) Proposition (implicit ℓ2-regularization)

A SGD algorithm which interpolates the data at some point:

▶ stops its convergence, it becomes constant,

▶ equal to the interpolant estimator with the smallest ℓd2 -nom

Other algorithms are known to make implicit regularization
Vardi, Shamir, ’implicit regularization in ReLu networks with square loss..’
Gunasekar, Lee, Soudry, Srebro, ’Characterizing Implicit bias in terms’...
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Understand explicit regularized IE in simple models

Linear regression model with (anisotropic) Gaussian design and
independent Gaussian noise: Yi =

〈
Xi ,β

∗〉+ ξi , i = 1, . . . ,N where
Xi ∼ Np(0,Σ), β

∗ ∈ Rp and ξi ∼ N (0, σ2
ξ) ind. of Xi . We note

y =

y1
...
yN

 , X =

X⊤
1
...

X⊤
N

 = G(N×p)Σ1/2 and ξ =

ξ1
...
ξN


where G(N×p) is a N×p standard Gaussian matrix (i.i.d. N (0, 1) entries).
The minimum ℓ2-norm interpolant estimator is

β̂ ∈ argmin
β∈Rp

(∥β∥2 : Xβ = y)

Questions

Under which conditions the minimum ℓ2-norm interpolant estimator
β̂ generalizes well in the Gaussian linear model?
Can we use the FSD to get sharp bounds for β̂?
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The FSD for the min-ℓ2norm IE

Rp = V1:k∗ ⊗⊥ Vk∗+1:d

where

▶ V1:k∗ is spanned by the k∗ top singular vectors of Σ

▶ Vk∗+1:d is spanned by the p − k∗ smallest ones

for

k∗ = min

{
k ∈ {1, . . . , p} : N ≲

Tr(Σk+1:p)

σk+1

}
for the SVD, Σ =

∑p
j=1 σjuju

⊤
j ,

Σ1:k∗ =
k∗∑
j=1

σjuju
⊤
j and Σk∗+1:p =

p∑
j=k∗+1

σjuju
⊤
j

We have X = G(N×p)Σ = X1:k∗ + Xk∗+1:p where

X1:k∗ = G(N×p)Σ1:k∗ and Xk∗+1:p = G(N×p)Σk∗+1:p.
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Two geometrical tools on V1:k∗ and Vk∗+1:p

⋆ [RIP] if k∗ ≤ c0N, then, w.h.p. for all v ∈ V1:k∗ ,

1

2

∥∥∥Σ1/2
1:k∗v

∥∥∥
2
≤

∥X1:k∗v∥2√
N

≤ 3

2

∥∥∥Σ1/2
1:k∗v

∥∥∥
2

and if k∗ ≥ c1N this holds only on the cone
{∥∥∥Σ1/2

1:k∗v
∥∥∥
2
≥ r∗ ∥v∥2

}
.

⋆ [Dvoretsky-Milman] if

N ≲ d∗(Σ
−1/2
k∗+1:pB

p
2 ) ∼

Tr(Σk∗+1:p)

σk∗+1

then w.h.p. for all λ ∈ RN ,√
Tr(Σk∗+1:p)

2
∥λ∥2 ≤

∥∥Xk∗+1:p
⊤λ
∥∥
2
≤

3
√
Tr(Σk∗+1:p)

2
∥λ∥2

and so, for A = X⊤
k∗+1:p(Xk∗+1:pX⊤

k∗+1:p)
−1,

1

2
√
Tr(Σk∗+1:p)

∥λ∥2 ≤ ∥Aλ∥2 ≤
4√

Tr(Σk∗+1:p)
∥λ∥2 .
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Decomposition of the min-ℓ2norm IE

We have β̂ = β̂1:k∗ + β̂k∗+1:p where X = X1:k∗ + Xk∗+1:p and

β̂1:k∗ ∈ argmin
β∈Rp

(
∥A(y − X1:k∗β)∥22 + ∥β∥22

)
∼

D.M.
argmin
β∈Rp

(
∥y − X1:k∗β∥22 + Tr(Σk∗+1:p) ∥β∥22

)
where A = Xk∗+1:p

⊤(Xk∗+1:pXk∗+1:p
⊤)−1 and

β̂k∗+1:p = argmin
β

(
∥β∥2 : Xk∗+1:pβ = y − X1:k∗ β̂1:k∗

)
= A(y − X1:k∗ β̂1:k∗).

β̂ = β̂1:k∗︸ ︷︷ ︸
a ’ridge’ estimator on V1:k∗

+ β̂k∗+1:p︸ ︷︷ ︸
min l2 IE of the residuals of β̂1:k∗
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Decomposition of the excess risk (general case)

Excess risk decomposition:∥∥∥Σ1/2(β̂ − β∗)
∥∥∥2
2
=
∥∥∥Σ1/2

1:k∗(β̂1:k∗ − β∗
1:k∗)

∥∥∥2
2
+
∥∥∥Σ1/2

k∗+1:p(β̂k∗+1:p − β∗
k∗+1:p)

∥∥∥2
2

where

▶
∥∥∥Σ1/2

1:k∗(β̂1:k∗ − β∗
1:k∗)

∥∥∥2
2
= estimation part: β∗

1:k∗ is estimated by

the ’ridge’ estimator β̂1:k∗

▶
∥∥∥Σ1/2

k∗+1:p(β̂k∗+1:p − β∗
k∗+1:p)

∥∥∥2
2
= price for overfitting

∥∥∥Σ1/2
k∗+1:p(β̂k∗+1:p − β∗

k∗+1:p)
∥∥∥
2
≤
∥∥∥Σ1/2

k∗+1:pβ̂k∗+1:p

∥∥∥
2
+
∥∥∥Σ1/2

k∗+1:pβ
∗
k∗+1:p

∥∥∥
2

Conclusion 1: A large part of the space Rp (i.e. Vk∗+1:p) is used to
interpolate the data.
Conclusion 2: Benign overfitting requires that the price for overfitting
on Vk∗+1:p does not harm the estimation property of β̂.
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Upper bound

Theorem (L. and Shang)

With probability at least 1− exp(−c0k
∗),

∥∥∥Σ1/2(β̂ − β∗)
∥∥∥
2
≲ max

{
σξ

√
k∗

N
,
∥∥∥Σ−1/2

1:k∗ β∗
1:k∗

∥∥∥
2

(
Tr(Σk∗+1:p)

N

)
,

∥∥∥Σ1/2
k∗+1:pβ

∗
k∗+1:p

∥∥∥
2
, σξ

√
NTr(Σ2

k∗+1:p)

Tr2(Σk∗+1:p)

}
.

It improves on Tsigler, Bartlett. ’Benign overfitting in ridge regression’:

▶ deviation from constant to exponentially small

▶ remove unecessary conditions thanks to Dvoretsky-Milman theorem

▶ extend the range of application

▶ proof based on the FSD
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Matching lower bound

Theorem (L. and Shang)

If Σ is such that k∗ < N/4 then

E
∥∥∥Σ1/2(β̂ − β∗)

∥∥∥
2
≳max

{
σξ

√
k∗

N
,
∥∥∥Σ−1/2

1:k∗ β∗
1:k∗

∥∥∥
2

(
Tr(Σk∗+1:p)

N

)
,

∥∥∥Σ1/2
k∗+1:pβ

∗
k∗+1:p

∥∥∥
2
, σξ

√
NTr(Σ2

k∗+1:p)

Tr2(Σk∗+1:p)

}
.

It improves on the Bayesian lower bounds from
Bartlett, Long, Lugosi, Tsigler. ’Benign overfitting in linear regression’
and
Tsigler, Bartlett. ’Benign overfitting in ridge regression’
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Necessary and sufficient conditions for benign overfitting of
the min-ℓ2 interpolant estimator in linear regression

We say that overfitting is benign for the min-ℓ2 IE when (Σ,β∗) is s.t.

A) estimation happens on a small dimension space k∗:

k∗ = o(N)

B) (σk∗+1, . . . , σp) is ’well-spread’ (i.e. it cannot be well approximated
by a N-sparse vector):

NTr(Σ2
k∗+1:p) = o

(
Tr(Σk∗+1:p)

2
)

C) β∗ is mostly supported on the eigenspace of the top k∗ eigenvectors
of Σ: ∥∥∥Σ1/2

k∗+1:pβ
∗
k∗+1:p

∥∥∥
2
= o(1)

D) σk∗ >> σk∗+1:∥∥∥Σ−1/2
1:k∗ β∗

1:k∗

∥∥∥
2

(
Tr(Σk∗+1:p)

N

)2

= o(1)
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Extention to the heavy-tailed case

We obtain the same rate (but for a different deviation probability) when:

▶ X = Σ1/2Z where Z is:
▶ symmetric with independent coordinates

▶ there is some α ≤ 2 such that for all 2 ≤ q ≤ logN and all v ∈ Rp,∥∥〈X , v
〉∥∥

Lq
≤ Cq1/α

∥∥〈X , v
〉∥∥

L2

▶ the noise ξ is
▶ mean zero and independent of X

▶ there is some r > 4 such that ∥ξ∥Lr ≤ C ∥ξ∥L2 .

18 / 40



Application 2:
kernel ridge regression

Tsigler, Bartlett. benign overfitting in ridge regression

Mourtada, J. and Rosasco, L. An elementary analysis of ridge regression with random

design.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. Linearized two-layers

neural networks in high dimension.

Liang and Rakhlin. Just Interpolate: Kernel ”Ridgeless”Regression Can Generalize

Liang, Rakhlin, Zhai. On the Multiple Descent of Minimum-Norm Interpolants and

Restricted Lower Isometry of Kernels

Caron, Chrétien. A finite sample analysis of the benign overfitting phenomenon for

ridge function estimation



Application to kernel ridge regression – 1/2

We have N iid data in the model

Y = f ∗(X ) + ξ =
〈
ϕ(X ), f ∗

〉
+ ξ

where f ∗ ∈ H a RKHS with kernel K : Ω× Ω → R where Ω ⊂ Rd is
compact and ∥K∥∞ ≤ 1 and ϕ : x ∈ Ω → K (x , ·) ∈ H is the feature map.
The KRR with regularization parameter λ ≥ 0:

f̂λ ∈ argmin
f∈H

(
N∑
i=1

(Yi − f (Xi ))
2 + λ ∥f ∥2H

)
.

We have

f̂λ = X⊤
ϕ

(
XϕX⊤

ϕ + λIN
)−1

y .

where

Xϕ =

ϕ(X1)
⊤

...
ϕ(XN)

⊤

 , so that Xϕf =

⟨ϕ(X1), f ⟩H
...

⟨ϕ(XN), f ⟩H

 =

 f (X1)
...

f (XN)


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Application to kernel ridge regression – 2/2

Theorem (Gavrilopoulos L. and Shang)

For Σ = Eϕ(X )⊗ ϕ(X ), when N ≲ (λ+ Tr(Σk∗+1:p))/σk∗+1,∥∥∥f̂λ − f ∗
∥∥∥
L2

≲ max

{
σξ

√
k∗

N
,
∥∥∥Σ−1/2

1:k∗ β∗
1:k∗

∥∥∥
2

(
λ+ Tr(Σk∗+1:p)

N

)
,

∥∥∥Σ1/2
k∗+1:pβ

∗
k∗+1:p

∥∥∥
2
, σξ

√
NTr(Σ2

k∗+1:p)

λ+ Tr(Σk∗+1:p)

}
.

holds w.h.p. when the noise ξ is mean zero, independent of X
and there is some r > 4 such that ∥ξ∥Lr

≤ C ∥ξ∥L2
; ϕ(X ) is such

that ∃ϵ > 0 s.t. for all f ∈ H, ∥f (X )∥L4+ϵ
≤ C ∥f (X )∥L2

; some

conditions on the concentration of ∥ϕ(X )∥H...

Rem.: Matching lower bound in the Gaussian case; result true for all
λ ≥ 0; applications to the Gaussian equivalence conjecture and the
multiple descents phenomena.
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Decomposition of the KRR f̂λ
We have f̂ = f̂1:k + f̂k+1:∞ where

f̂1:k ∈ argmin
f

(
∥Q (y − Xϕ,1:k f )∥2H + ∥f ∥2H

)
,

and Q : RN → Hk+1:∞ is such that

Q⊤Q =
(
Xϕ,k+1:∞X⊤

ϕ,k+1:∞ + λIN
)−1 ∼

D.M.
(Tr(Σk+1:∞) + λ)−1 IN

hence

f̂1:k ≈ argmin
f

(
∥y − Xϕ,1:k f ∥22 + (Tr(Σk+1:∞) + λ) ∥f ∥2H

)
,

hence f̂1:k is a“ridge”with tuning parameter λ+ Tr(Σk+1:∞) and

f̂k+1:∞ = X⊤
ϕ,k+1:∞

(
Xϕ,k+1:∞X⊤

ϕ,k+1:∞ + λIN
)−1

(
y − Xϕ,1:k f̂1:k

)
= ridge with parameter λ for the residual y − Xϕ,1:k f̂1:k
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Application 3:
min-ℓq-norm interpolant estimators

Wang, Donhauser, Yang. Tight bounds for minimum ℓ1-norm interpolation of noisy

data

Koehler, Zhou, Sutherland, Srebro. Uniform Convergence of Interpolators: Gaussian

Width, Norm Bounds, and Benign Overfitting



FSD and decomposition of min ℓq interpolant estimators

N iid data (Xi ,Yi ) in the linear model Y =
〈
X ,β∗〉+ ξ. Let q ≥ 1 and

β̂ ∈ argmin
β∈Rp

(
∥β∥q : Xβ = y

)
.

We have β̂ = β̂J + β̂Jc where

β̂J ∈ argmin
β∈Rp

(
∥A[y − XJβ]∥qq + ∥β∥qq

)
where A[µ] ∈ argmin

ν

(
∥ν∥q : XJcν = µ

)
and

β̂Jc = A[y − XJ β̂J ]

(ex. q = 1: BPDP); that is for a FSD

Rp = RJ ⊗⊥ RJc

and RJ = span(ej : j ∈ J) and RJc

= span(ej : j ∈ Jc) is adapted to the
canonical basis (ej)j .
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FSD and Dvorestky-Milman

D.M. for X⊤
Jc =⇒ A is isomorphic to the ℓ2-norm:

∀λ ∈ RN : ∥λ∥2 ℓ∗(Σ
1/2
Jc Bp

q ) ≲
∥∥X⊤

Jcλ
∥∥
q′ ≲ ∥λ∥2 ℓ∗(Σ

1/2
Jc Bp

q )

=⇒ ∀µ ∈ RN :
∥µ∥2

ℓ∗(Σ
1/2
Jc Bp

q )
≲ ∥A[µ]∥q ≲

∥µ∥2
ℓ∗(Σ

1/2
Jc Bp

q )

On the estimation part of the feature space β̂ behaves like

β̂J ∈ argmin
β∈Rp

(
∥A[y − XJβ]∥qq + ∥β∥qq

)
∼ argmin

β∈Rp

(
∥y − XJβ∥q2 + ℓ∗(Σ

1/2
Jc Bp

q )
q ∥β∥qq

)
ie a regularized ERM wrt the square loss function to the power q and ℓqq
regularization

▶ q = 1: square root LASSO of [Belloni, Chernozhukov and Wang]
▶ q = 2: ridge
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Main result for the min ℓq, 1 < q < 2, IE

Assume that X = Σ1/2Z where Σ is a diagonal matrix and Z has
independent coordinates such that
▶ ZJc is N (0, IJc )
▶ ZJ is sub-gaussian;

if
|J| ≲ N ≲ ϵ21d∗(Σ

−1/2
Jc Bp

q′)

then w.h.p.
∥∥∥Σ1/2

J (β̂J − β∗
J)
∥∥∥
2
≲ r(VJ ,VJc ) and

∥Σ1/2
Jc (β̂Jc − β∗

Jc )∥2 ≲ ∥Σ1/2
Jc β∗

Jc∥2

+ (r(VJ ,VJc ) + σξ)

(√
Nℓ

1
q−1
∗ (Σ

q
2

JcBJc

2
3−q

)

ℓ
q

q−1
∗ (Σ

1/2
Jc BJc

q )
+

N
q

2(q−1)

(
diam(Σ

q
2

JcBJc

2
3−q

)
) 1

q−1

ℓ
q

q−1
∗ (Σ

1/2
Jc BJc

q )

)
,

where, for some interpolation norm ∥·∥, r(VJ ,VJc ) equals∥∥∥Σ1/2
Jc β∗

Jc

∥∥∥
2
+
√
ϵ1σξ +

√
|J|
N

σξ + σξ

ℓq∗(Σ
1/2
Jc Bp

q )

Nq/2

∥∥∥β∗
J ⊙ |β∗

J |⊙(q−2)
∥∥∥ .

▶ Similar result for q > 2 under a weaker moment condition on ZJ .
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Application 4 (work in progress):
maximum margin interpolant estimator in

classification

Cao, Gu, Belkin. risk bounds for over-parametrized maximum margin classification

Shamir. The implicit bias of benign overfitting

Stojanovic, Donhauser, Yang. Tight bounds for maximum l1-margin classifiers



The max-margin IE and its decomposition

The minimum ℓ2-norm/max-margin interpolant (linear) classifier (aka
hard margin support vectors machine) is

β̂ ∈ argmin
β∈Rp

(∥β∥2 : ∀i ∈ [N], Yi ⟨Xi ,β⟩ ≥ 1)

= argmin
β∈Rp

(∥β∥2 : Xyβ ⪰ 1) = β̂J + β̂Jc

where 1 = (1, 1, · · · , 1) ∈ RN , Xy = [Y1X1| · · · |YNXN ]
⊤,

β̂Jc = B[1− Xy β̂J ].

where B[µ] ∈ argminν (∥ν∥2 : Xy ,Jcν ⪰ µ),
Xy ,Jc = [Y1PJcX1| · · · |YNPJcXN ]

⊤ and

β̂J ∈ argmin
β∈Rp

(
∥B[1− Xy ,Jβ]∥22 + ∥β∥22

)
.
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DM and the square hinge loss

D.M. for X⊤
y ,Jc =⇒ B is isomorphic to the truncated ℓ2-norm:

∀λ ∈ RN : ∥λ∥2
√
Tr(ΣJc ) ≲

∥∥X⊤
y ,Jcλ

∥∥
2
≲ ∥λ∥2

√
Tr(ΣJc )

⇒ ∀µ ∈ RN :
∥[µ]+∥2√
Tr(ΣJc )

≲ ∥B[µ]∥2 ≲
∥[µ]+∥2√
Tr(ΣJc )

where [µ]+ = (max(µi , 0))
N
i=1, and X⊤

y ,Jc =
[Y1PJcX1| · · · |YNPJcXN ].

β̂J ∈ argmin
β∈Rp

(
∥B[1− Xy ,JβJ ]∥

2
2 + ∥βJ∥

2
2

)
∼ argmin

β∈Rp

(
∥[1− XyβJ ]+∥

2
2 + Tr(ΣJc ) ∥βJ∥

2
2

)
is a regularized ERM for a the square hinge loss and ℓ22 regularization and

β̂Jc uses the free part of the FS to interpolate the data.
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Excess 0− 1 risk decomposition

Setup: (X ,Y ) ∈ Rp × {−1, 1},

f ∗(x) = 2I (η(x) > 1/2)− 1 where η(x) = P[Y = 1|X = x ].

P
(
Y f̂ (X ) < 0

)
− P (Yf ∗(X ) < 0) 0-1 excess risk

= P
(
Y f̂ (X ) < 0

)
− P

(
Y f̂J(X ) < 0

)
error on the ’free part of the FS’

+ P
(
Y f̂J(X ) < 0

)
− P (Yf ∗J (X ) < 0) error on the estimation part

+ P (Yf ∗J (X ) < 0)− P (Yf ∗(X ) < 0) approximation error

where f̂ = f̂J + f̂Jc for a FSD Rp = VJ ⊕⊥ VJc .
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Preliminary results in the Gaussian logistic model

X ∼ N (0,Σ) and, for µ ∈ Rp,

P(Y = 1|X = x) =
1

1 + exp(−2
〈
Σ−1µ, x

〉
)
.

The Bayes rule is f ∗(·) = sign(
〈
β∗, ·

〉
) for β∗ = Σ−1µ.

If,

dim(VJ) ≲ N ≲ δ̄2
Tr(ΣJc )

∥ΣJc∥op
.

W.c.p. PL{0,1}
β̂

≲ ∥β∗∥2(r(VJ ,VJc ))2 + δ̄
√
tPℓβ∗

J
, when

∥Σ1/2β∗
J∥2 > r(VJ ,VJc ) for

r(VJ ,VJc ) = Pℓβ∗
J

√
dim(VJ)

N
+

Tr(ΣJc )

N
∥β∗

J∥+ δ3t
√

Pℓβ∗
J
.

Rem.: best FSD for VJ = span(β∗) (?)
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Feature space decomposition: take away message

The FSD method can be used to

▶ decrease the cost of uniform convergence: we only estimate over the
space RJ

Rp −→ RJ

▶ understand new phenomenum like BO or revist old estimators thanks
to the ’free part’ of the feature space that allows estimators to do
something else than estimation!

freedom on RJc

.
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Thanks!

▶ G. Lecué and Z. Shang. A geometrical viewpoint on the benign
overfitting property of the minimum l2-norm interpolant estimator.
PTRF24

▶ G. Gavrilopoulos, G. Lecué and Z. Shang. A Geometrical Analysis of
Kernel Ridge Regression and its Applications. AOS25

▶ G. Lecué and Z. Shang. A Geometric Viewpoint on the Benign
Overfitting Property of the Minimum ℓq-norm Interpolant Estimator
in Regression and Classification Problems. In preparation.

33 / 40



benign overfitting: a high dimensional phenomenon?

Not all consistent interpolant estimators need high dimensional
spaces.
There are so far two types of interpolant estimators that generalize well:

▶ either you choose a minmax optimal estimator and you make small
perturbation of it around the data points so that it interpolates well

Belkin, Rakhlin and Tsybakov. Does data interpolation contradict
statistical optimality?

▶ or you look for a smooth estimator (even a linear one) and try to
make it going through the data: in that case,

being smooth and interpolant requires space: p >> N.
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What would do a statistician

y A statistician would not consider interpolant estimators (she/he would
do some threshold in the direction of small singular values to avoid useless
variance terms in directions where the signal β∗

k∗+1:p is not estimated)

y We study interpolant estimators because they appear naturally in deep
learning and they perform very well for some tasks.

y In the end, we have enough space to interpolate and the generalization
error

∥∥Σ1/2·
∥∥
2
does not put too much weights on this space so it does

not harm to use that space to interpolate the data and that is what the
min ℓ2-norm interpolant estimator does.
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mini-batch SGD interpolator tends to the min-ℓ2 IE

Let a loss function ℓ : R× R → R and the mini-batch SGD algorithm

θ(t+1) = θ(t) − ηt

(
1

|Bt |
∑
i∈Bt

∂1ℓ(
〈
θ(t),Xi

〉
,Yi )Xi

)

with θ(0) = 0.

⋆ For the square loss function: if at step T , θ̂(T ) is interpolant (i.e.〈
θ̂(T ),Xi

〉
= Yi ,∀i) then for all t ≥ T , θ̂(t) = θ̂(T ) and

θ̂(T ) ∈ argmin
θ∈Rd

(
∥θ∥2 :

〈
θ,Xi

〉
= Yi ,∀i

)
= X⊤(XX⊤)−1y

(also true if we only assume that ∂1ℓ(u, u) = 0).

⋆ For any loss function: if Xθ(T ) = y then it is equal to the min-ℓ2-norm
estimator.
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The bias/variance approach in [TB] and [BLLT]

The minimum ℓ2-norm IE has a closed form:

β̂ = X⊤(XX⊤)−1y ∈ argmin
β∈Rp

(∥β∥2 : Xβ = y)

and so, for y = Xβ∗ + ξ, we have∥∥∥Σ1/2(β̂ − β∗)
∥∥∥2
2
≲
∥∥∥Σ1/2(X⊤(XX⊤)−1X− Ip)β

∗
∥∥∥2
2︸ ︷︷ ︸

bias

+
∥∥∥Σ1/2X⊤(XX⊤)−1ξ

∥∥∥2
2︸ ︷︷ ︸

variance
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Application: multiple descents

For K (x , y) = h(⟨x , y⟩ /d) where h is a polynomial function.

Corollary (Gavrilopoulos L. and Shang)

Let (f ∗d )d , (µd)d , (Hd)d be a sequence of target functions, sub-
Gaussian probability measures and RKHSs. As N, d → ∞ with
ω(d ι) ≤ N ≤ o(d ι+1),∣∣∣∥f̂0 − f ∗d ∥L2(µd ) − ∥Γ1/2>ι f

∗
>ι∥Hd

∣∣∣ = od,P(1)(σξ + ∥f ∗>ι∥Hd ).

▶ Improve the intervale from ωd (d
ι log d) ≤ N ≤ Od

(
d ι+1−δ0

)
to

ω(d ι) ≤ N ≤ o(d ι+1).

▶ The first sub-Gaussian result in multiple descent.

▶ We do not require the assumptions Ehd(X ) = Ef ∗d (X ) = 0 as in
[Ghorbani et al., 2021]

▶ Unification between [Liang et al., 2020] and [Ghorbani et al., 2021].
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Application: multiple descents

Figure: Taken from [Ghorbani et al., 2021]. Multiple descents caused by

∥Γ1/2
>ι f

∗
>ι∥2Hd

. The effect of variance vanishes at limit.
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Application: multiple descents

Figure: Non-asymptotic viewpoint. The descent and ascent are because of the

variance σξ

√
dι

N
and σξ

√
N

dι+1 , while the bottom of each valley is above

∥Γ1/2
>ι f

∗
>ι∥2Hd

.
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