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Diffusion Models

DALL-E 3
 (Betker et al.)

Stable Diffusion 3
 (Esser et al.)

AlphaFold 3
 (Abramson et al.)
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Basics of Diffusion Models 
(Ho et al.; Song et al.)

Forward Process:

Backward Process:

 
➢ The backward process can be replaced by Probability Flow ODE:

     
     with the same marginal distributions at all time steps as reverse SDE.

➢ In this talk, the drift  and diffusion coefficient .  f = 0 g(t) = 1



Given  on [-1,1], how to estimate the score function           
of distribution at time t? What is the minimax statistical error rate? 

𝜇1,  𝜇2,  ⋯,  𝜇𝑛~𝑓
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Score Function

where                             is the density of Gaussian distribution .  𝒩(0,𝑡)
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Algorithm: Backward SDE with Estimated Score

➢   Note that
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Statistical Understanding for Diffusion Models

Girsanov Formula: For the score-based diffusion model with  and . Denote 
 to be the true distribution and generated distribution. We have: 

𝑓(𝑥𝑡, 𝑡) ≡ 0 𝑔(𝑡) = 1
𝑋0,  𝑋̂0

We use the Mean Integrated Squared Error: 

➢  

➢  

➢  Optimal score matching? Optimal sampling?  
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Function class for Diffusion Models

➢ Define the Hölder class of probability density function 

➢ The density estimation in Hölder class  has minimax TV error rate , and 
Wasserstein-1 error rate max{ , } (up to a log n factor for ).

ℱ𝛼 𝑛− 𝛼
2𝛼 + 𝑑

𝑛− 𝛼 + 1
2𝛼 + 𝑑 n−1/2 𝑑 = 2
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A (Kernel Density) Plug-in Estimator

➢ Density estimation

➢ Derivative of density estimation

➢ Score function

➢   Note that
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Risk Upper Bound
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An Unbiased Estimator

Unbiased estimation for both  and  𝜓(𝑥, 𝑡) 𝑝(𝑥, 𝑡),

Score function ➢  

➢  

➢   Note that
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Risk Upper Bound
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Another Unbiased Estimator

where 

Score function 

Unbiased estimation

➢  

➢  

➢   Note that
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Risk Upper Bound
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Goal: Rate-Optimal Score Matching

The transition points are:  and . 𝑡 = 1 𝑡 = 𝑛−  2
2𝛼 + 1
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Lower Bound

➢ For illustration, we shift focus to proving a lower bound for the target 

with respect to -norm. 𝐿2

➢ Introduce free parameter , for unknown , set unknown density: 

such that  (to satisfy Hölder) and  .

𝜌 > 0 bi ∈ {0,1}

𝜌 ≥ 𝜖 𝑚 ≍
1
𝜌

➢ Classical construction: ρ = ϵ = n− 1
2α + 1



20

Lower Bound 

If a function  is compactly supported, we haveh ∈ 𝐶∞(ℝ)

A key inequality: ➢  

➢  
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Rate-Optimal Score Matching

After combining up everything, we have the minimax rate for score matching at any .𝑡 > 0

The transition points are:  and . 𝑡 = 1 𝑡 = 𝑛−  2
2𝛼 + 1



➢ Early stopping is not required. 

➢ At different t, we have different estimation accuracy. Sharp 
minimax rates without extraneous logarithmic terms.  

➢ Consider all smoothness  α
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Some Comments
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Rate-Optimal Estimation under TV

Finally, we apply Girsanov’s theorem and take integral of the score matching minimax 
rate: 
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Rate-Optimal Estimation Under Wasserstein Distance

➢ For , if  has a CDF  and  has a CDF , the optimal transport is  d = 1 X0 F X1 G G−1(F(X0))
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1/ n

➢  

➢  

➢  

Rate-Optimal Estimation Under Wasserstein Distance

➢  Upper bound
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Extension to Multivariate Case

To generalize our result to the multivariate case with dimension , we define the class:𝑑 > 1

The proof techniques are the same as the  case, with only trivial differences.   𝑑 = 1
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Extension to Multivariate Case
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Rate-Optimal Estimation Under Total Variation 
Distance
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Rate-Optimal Estimation Under Wasserstein Distance

This result matches the upper bound in (Niles-Weed 2022) and achieves the 
minimax rate for Wasserstein distance (up to a logarithmic factor when ).𝑑 = 2
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Estimation of Optimal Transport



➢ Find a transport  from  to , , by a 
flow , where

. 

➢ Reduce the transport cost: . 

➢ It can be shown that applying rectified flow iteratively to obtain 
the optimal transport : . 

T X0 X1 (Z0, Z1) = Rectify(X0, X1)
dZt = vt(Zt)dt

vt(x) = 𝔼[X1 − X0 | tX1 + (1 − t)X0 = x]

𝔼[∥Z1 − Z0∥2] ≤ 𝔼[∥X1 − X0∥2]

T* (Z0, Z1) = Rectify(X0, X1)

33

Rectified Flow (Liu, 2022)



➢ If , it can be show that , 

where  is the PDF of . 

➢ Apply rectified flow with a source distribution Gaussian to 
estimate  to . Denote the estimators by  and 

 respectively. 

Y0 ∼ N(0,I) vt(y) =
y
t

+
t − 1

t
∇log(pt(y))

pt Yt = tY1 + (1 − t)Y0

ℒ(X0) ℒ(X1) ℒ( ̂X 0)
ℒ( ̂X 1)
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Rectified Flow and Score Matching



➢ Apply rectified flow iteratively to obtain the optimal transport  from  to 
.  

➢ (Manole et al., 2024). 
Obtain rate-optimal estimation under the Hölder class assumption of this talk.  

                Score matching                                           Iterate rect-flows 

̂T* ℒ( ̂X 0)
ℒ( ̂X 1)

𝔼x∼X0
[∥T*(X ) − ̂T* (X )∥2] ≲ max{W2

2(X0, ̂X 0), W2
2(X1, ̂X 1)}

dXt = ̂v t(Xt)dt
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Optimal Estimation of Optimal Transport 

{Xi}
i.i.d.∼ F          ̂v t

   
( ̂X 0, ̂X 1)         ̂T*
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Summary

• Rate-Optimal Score Matching 

• Distribution Estimation under Total-variation and Wasserstein Distances 

• Optimal Transport Estimation


