From softmax mixture ensembles to mixtures of experts, with applications to LLM output summarization

Florentina Bunea.

Department of Statistics and Data Science, Cornell University

S. Strimas-Mackey, Google; X. Bing, U. Toronto; N. Bétache, Cornell; J. Niles-Weed, NYU; M. Wegkamp, Cornell

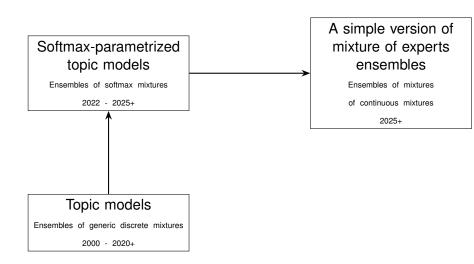
Overview

Steady progress made in LLM text generation.

Not this talk!

- 2 LLM evaluation lags behind. Many heuristics.
 - Comparing LLM output with (human) reference requires corpora summarization.
 - Quality of comparison hinges on quality of summarization.
 Challenge and goal: Do not use the billion parameter generative model!
 - Statistical models for corpora summarization are emerging.
 New metrics for corpora comparison based on these summaries are emerging. Stay tuned!
- This talk: Interpretable corpora summarization via mixture ensembles.
 Corpus summary = mixing measure

From analog to LLM's



What movie genres are they reviewing?

Domain	Interpretation	Movie ID	Document excerpt
(To discover)	(To discover)		
		37,123	This was an OK movie, at best, outside the context of the book. But having read and enjoyed the book quite a bit it was a real disappointment in comparison
1	?	15,709	This has always been one of my favourite books. I was thrilled when I saw that the book had been made into a movie, for the first time since it was written, over 50 years before
		12,445	This was the most disappointing films I have ever seen recently. And I really hardly believe that people say goods things about this very bottom film!
2	?	32,442	Acting was awful. Photography was awful. Dialogue was awful. Plot was awful. (I'm not being mean hereIt really was this bad.)
		23,753	This game really is worth the ridiculous prices out there. The graphics really are great for the SNES, though the magic spells don't look particularly great
3	?	12,261	I remember playing this game at a friend. Watched him play a bit solo until we decided to try play 2 and 2, which we found out how to do
4		29,114	After watching such teen horror movies as Cherry Falls and I know what you did last summer, I expected this to be similar
	?	3,448	Being a HUGE fan of the horror genre, I have come to expect and appreciate cheesey acted, plot-holes galore, bad scripts
?	?	xxxx	Available text

Topic model = a non-parametrized ensemble of related discrete mixtures An "analog" story

- Data = Corpus = Ensemble of n documents
 - Document i = "Bag of words" representation = $Y^{(i)} \sim \text{Multinomial}_{p}(N, \pi^{(i)})$
 - True word distribution $\pi^{(i)} \in \Delta_p$ relative to given vocabulary of size p.
- Most basic model for the ensemble = Topic model
 - $\bullet \ \pi^{(i)} = \sum_{k=1}^K \alpha_k^{(i)} A_k, \quad i \in [n].$
 - Document word frequencies driven by corpus topics $A_k \in \Delta_p$.
 - Topics A_k are latent, and common to the corpus.

How to fit a topic model? Many choices, 20+ years of research

Bavesian methods Blei (2003++, 2022); Nguyen (2013); Ho et al (2016+)

- NMF-inspired methods
 - Π admits an NMF $\Pi = AT$ that **is** unique and learnable in poly time under (sufficient) restrictions on A and T.

Most popular: topic models with anchor words or anchor documents.

- Existing methods learn a decomposition of Π under these restrictions.
 - Simplex based methods. Arora et al. (2012+): Bitorff et al. 2012: Ke et al. (2020+): Fan, J. et al (2021+); Klopp et al (2023+)
 - A specialized second moment matching method. Bing, Bunea, Wegkamp (2020 a, b)

Theoretical guarantees for computationally efficient estimates

in identifiable topic models

Minimax optimal latent topic estimation

$$\max_{1 \le k \le K} |\widehat{A}_{\cdot k} - A_{\cdot k}||_1 = \mathcal{O}_{\mathbb{P}} \left(\sqrt{\frac{pK}{nN}} \right).$$

Bing, Bunea, Wegkamp (2020 a, b)

2 For each document i, the MLE $\widehat{\alpha}^{(i)}$ is sparse if $\alpha^{(i)}$ is sparse, w.h.p.

$$\text{If} \quad \widehat{\alpha}^{(i)} := \operatorname{argmax}_{\alpha \in \Delta_K} \sum_{j=1}^{p} Y_j^{(i)} \log \left(\widehat{A}_{j\cdot}^{\top} \alpha \right),$$

then
$$supp(\widehat{\alpha}^{(i)}) \subseteq supp(\alpha^{(i)})$$
.

Bing, Bunea, Strimas-Mackey, Wegkamp (2022)

3 An appropriate one-step update $\widetilde{\alpha}^{(i)}$ of $\widehat{\alpha}^{(i)}$ is asymptotically normal.

$$\lim_{n,N\to\infty}\sqrt{N}\;\Sigma^{+\frac{1}{2}}\begin{pmatrix}\widetilde{\alpha}^{(i)}-\alpha\end{pmatrix}\overset{d}{\to}\mathcal{N}_{K}\begin{pmatrix}0,\begin{bmatrix}\boldsymbol{I}_{K-1}&0\\0&0\end{bmatrix}\end{pmatrix}.$$

Bing, Bunea, Niles-Weed (2024)

Intuition: the MLE of a sparse mixture weight vector is sparse w.p. 1

$$(Y_1, Y_2, Y_3) \sim \mathsf{Multinomial}_3(N, \pi),$$
 $\pi = \sum_{k=1}^2 \alpha_k A_k, \quad \mathsf{with} \quad A_1 = (a_1, a_2, 0)^\top, \quad A_2 = (0, 0, 1)^\top, \quad a_1 + a_2 = 1, \quad a_1, a_2 \geq 0.$ $Y_1 + Y_2 \sim \mathsf{Bin}(N, \alpha_1), \quad Y_3 = \mathsf{Bin}(N, \alpha_2).$

$$\widehat{\alpha}_{\text{mle},1} = \frac{Y_1 + Y_2}{N}, \quad \widehat{\alpha}_{\text{mle},2} = \frac{Y_3}{N}.$$

If $\alpha_k = 0$, for some $k \in \{1, 2\}$, then $\widehat{\alpha}_{\mathsf{mle}, k} = 0$, w.p. 1.

If data is generated from a sparse discrete mixture, $\widehat{\alpha}_{mle}$ can have zero entries.

Use topic models to learn **broad** latent domain representations

Discovered domain	Discovered interpretation	Movie ID	Discovered movie cluster (review excerpt)
1	Book Adaptations	37,123	This was an OK movie, at best, outside the context of the book. But having read and enjoyed the book quite a bit it was a real disappointment in comparison
		15,709	This has always been one of my favourite books. I was thrilled when I saw that the book had been made into a movie, for the first time since it was written, over 50 years before
2	Negative reviews	12,445	This was the most disappointing films I have ever seen recently. And I really hardly believe that people say goods things about this very bottom film!
		32,442	Acting was awful. Photography was awful. Dialogue was awful. Plot was awful. (I'm not being mean hereIt really was this bad.)
3	Game-related	23,753	I won't get into the computer game style of the movie i have never seen a movie that tried on the computer game-story and succeeded
	(video and movies)	12,261	This is the second best game ever only beaten by Final Fantasy VII. I have found this one of the more boring games the FMV's are even better than this game but there is no story
4	Horror	29,114	After watching such teen horror movies as Cherry Falls and I know what you did last summer, I expected this to be similar
		3,448	Being a HUGE fan of the horror genre, I have come to expect and appreciate cheesy acted, plot-holes galore, bad scripts
5	TV Shows	32,315 10,454	I used to watch this show when I was a little girl I'v watched the TV show Hex twice over and I still can not get enough of it. The show is excellent
6	Historical	6,709	Carlo Levi, an Italian who fought against the arrival of Fascism in his native Torino, was arrested for his activities

Curated Dataset:

Content Type	Count
Movie Reviews	58
Game Reviews	58
Total	116

Examples

- Movies: Final Fantasy film, Resident Evil movie, Street Fighter
- Games: Final Fantasy VIII, Metal Gear Solid, Tomb Raider III

A standard topic model with K = 2 on the curated data set is not enough

Topic 1 (mixed review types)

"Game" and "movie" co-occur.

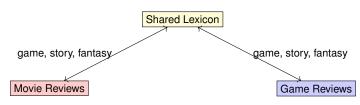
Top Words:

- **10** game (14.06%)
- 2 movie (8.13%)

Top Words:

- **10** game (17.9%)
- 2 movie (5%)

Topic 2 (mixed review types) "Game" and "movie" co-occur.



Impossible to distinguish between the two topics based on word frequency alone.

Standard topic models: the good and the bad

- The Good
 - Excellent tools for preliminary data understanding.
 - Induce a summary of the corpus, the mixing measure

$$\sum_{k=1}^K \bar{\alpha}_k \delta_{A_{\cdot k}}.$$

- Extensive theoretical and computational understanding.
- 2 The Bad
 - By definition, they cannot incorporate covariates.
 - The "bag of words" representation loses document context.

Softmax mixture ensembles

 $Y^{(i)}$ discrete r.v. supported on $\{\text{word}_1, \dots, \text{word}_p\}$, for each $i \in [n]$.

$$\mathbb{P}(\mathsf{Word}\ j\ \mathsf{in}\ \mathsf{doc}\ i) \qquad \underbrace{\sum_{Topic\ model\ assumption}}^{K} \mathbb{P}(\mathsf{Topic}\ k\ \mathsf{in}\ \mathsf{doc}\ i\) \mathbb{P}(\mathsf{Word}\ j\ |\ \mathsf{Topic}\ k)$$

$$\mathbb{P}(\mathsf{Y}^{(i)} = \mathsf{word}_j) =: \pi_j^{(i)} \qquad = \qquad \sum_{k=1}^{K} \alpha_k^{(i)} A_{jk}, \quad j \in [p], \quad i \in [n].$$

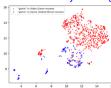
 $Y^{(i)}$ discrete r.v. supported on given $\{x_1,\ldots,x_p\}$ in \mathbb{R}^L , for each $i\in[n]$.

$$\mathbb{P}(Y^{(i)} = x_j) =: \pi^{(i)}(\omega^{(i)} \mid x_j) = \sum_{k=1}^K \alpha_k^{(i)} A_k(x_j)
=: \sum_{k=1}^K \alpha_k^{(i)} \frac{\exp(x_j^\top \theta_k)}{\sum_{\ell=1}^p \exp(x_\ell^\top \theta_k)}, \quad j \in [p], \quad i \in [n].$$

 $\theta_1 \dots, \theta_k \in \mathbb{R}^L$ are the latent domain parameters; L < p.

Softmax mixture ensembles with embedded dictionary

- Before 2017
 - Generic-context word embeddings (word2vec). Each word in a vocabulary mapped to a unique vector in \mathbb{R}^L .
 - Documents = (still) "bag of words" representation, now parametrized.
 - Gain: dimension reduction, with L < p.
- 2 After 2017 (Vaswani et. al. Attention is all you need)
 - Contextually embedded text. BERT, CAMEMBERT ...
 - Each vocabulary word will be mapped to many different vectors in R^L;
 Each vocab. word embedding depends on its local context.
 - Different modeling strategy needed: MoE.
 Softmax mixture ensembles = the key building block. Coming up!



Quick account of existing results on softmax mixture (ensemble) models

- Theoretical understanding of softmax mixtures (n ≥ 1) lacking.
 Classical results (Lindsay 95) on "quadratic variance exponential families" do not extend, especially for L > 1.
- Computationally efficient estimation of mixture parameters, by any method and with theory, generally lacking, for any mixture model, for L > 1.
 Scattered results, devoted exclusively to Gaussian mixtures (GMM).
- Most basic algorithm for mixture models: EM. Theoretical and practical understanding of EM, even in GMM: still emerging, for K>2.
 - No existing results for EM in softmax mixtures.

EM parameter estimation in softmax mixture ensembles

Joint log-likelihood is not concave in parameters:

$$\ell(\boldsymbol{\omega}) \, \propto \, \sum_{i=1}^n \sum_{j=1}^p \widehat{\boldsymbol{\pi}}_j^{(i)} \log \left\{ \sum_{k=1}^K \alpha_k^{(i)} \frac{\exp(\boldsymbol{X}_j^\top \boldsymbol{\theta}_k)}{\sum_{\ell=1}^p \exp(\boldsymbol{X}_\ell^\top \boldsymbol{\theta}_k)} \right\}$$

• The surrogate objective function **is** concave in ω :

$$\widehat{Q}(\boldsymbol{\omega} \mid \boldsymbol{\omega}') := \sum_{i=1}^{n} \sum_{j=1}^{p} \widehat{\pi}_{j}^{(i)} \sum_{k=1}^{K} h_{\boldsymbol{\omega}'}(k, i, X_{j}) \left\{ \log(\alpha_{k}^{(i)}) + X_{j}^{\top} \boldsymbol{\theta}_{k} - \log\left(\sum_{\ell=1}^{p} \exp(X_{\ell}^{\top} \boldsymbol{\theta}_{k})\right) \right\}$$

where

$$h_{\omega'}(k,i,x) = \frac{\alpha_k^{(i)'} A_{\theta_k'}(x)}{\sum_{a=1}^K \alpha_a^{(i)'} A_{\theta_k'}(x)}, \quad \forall k \in [K], i \in [n], x \in \{X_1, \dots, X_p\},$$

for
$$A_{\theta,j}(x) = \frac{\exp(X_j^\top \theta)}{\sum_{j=1}^{p} \exp(X_j^\top \theta)}$$
, for any $\theta \in \mathbb{R}^L$ and all $j \in [p]$.

Theoretical guarantees for ensemble EM with warm start

for warm start within a $r = O(L + \log p)^{-1/2}$ neighborhood of the target, the EM estimates satisfy

$$\max_{k} \|\widehat{\theta}_k - \theta_k\|_2 \lesssim \sqrt{\frac{L \log(nN)}{nN}}$$

w.h.p., after $O(\log(Nn/L))$ iterations.

One sample (n = 1) theory: Bing, Bunea, Niles-Weed, Wegkamp (2025+) Ensemble (n > 1) theory: stay tuned, 2025+!

2 Cross-entropy (re-fitted) document mixture weight estimates $\widetilde{\alpha}^{(i)}$ are sparse !

Standard topic models, sparsity: Bing, Bunea, Strimas-Mackey, Wegkamp (2022); Standard topic models, inference for sparse weights: Bing, Bunea, Niles-Weed, (2024).

Softmax topic models: stay tuned, 2025+!

Main technical conditions for EM algorithmic-statistical success

1 Well behaved Fisher information matrix of each softmax mixture component.

- 2 Atom separation: $\min_{k \neq k'} \|\theta_k \theta_{k'}\|_2^2 \geq C \log K$ Weakest known separation is $\min_{k \in \mathcal{K}} \{K, L\}$, for EM convergence to a **global maximum** in GMM, $K \geq 3$. Yan et. al (2017); Zhao et al. (2020).
- Initialization: there exist $\theta_1^0,\dots,\theta_K^0$ s.t. $\max_{k\in[K]}\|\theta_k-\theta_k^0\|_2\leq r$. Explicit characterization of warm start radius: $r=O((L+\log p)^{-1/2})$.

One sample (n=1) theory: Bing, Bunea, Niles-Weed, Wegkamp (2024, 2025+)

Ensemble ($n \ge 1$): stay tuned, 2025+!

Warm start construction for EM in softmax mixtures with random design

- O Classic with a twist $(n \ge 1)$: New MoM parameter estimates. Bing, B., Niles-Weed and Wegkamp; 2025+
 - Estimate many latent moments of mixing measures $\rho := \sum_{k=1}^{K} \alpha_k \delta_{\theta_k}$ via softmax mixture-tailored functionals of the data (New !).

 Use Lindsay's results (89, 93) to find MoM latent parameter estimates.
 - Parametric rates if atoms θ_k differ in their first coordinate. Warm start!
 - Behavior of MoM parameter estimates deteriorates rapidly when K increases, even for moderate L.
- 2 Commonly used $(n \ge 1)$: multiple random initializations. B, B, N-W, W; 2025+
 - Estimate only second-order latent moments of the mixing measure.
 - Estimate K-dim sub-space in R^L spanned by θ₁,..., θ_K, using latent moment estimates.
 Low dimensional Initialization; success in only exp (K) draws.
 - Low dimensional Initialization; success in only exp(K) draws. **Recommended !**

Specific warm-start construction for EM in ensembles with pure documents

- lacktriangledown Specific to softmax mixtures ensembles (n>1): pure document assumption. Computational savings relative to random start.
- 2 The pure document assumption.

For each domain $k \in [K]$, there exists a document $i \in [n]$ covering only that domain, $\|\alpha^{(i)}\|_0 = 1$: $\alpha_k^{(i)} = 1$, and $\alpha_l^{(i)} = 0$, $\forall l \neq k$.

3 Doc *i* pure = Doc distribution is a mixture with *one component*.

Akin to having observations from each individual mixture component.

- Estimate the pure document index set. Find its K clusters.
- Warm start for θ_k : average of *individual* softmax (MLE) estimate.
- Warm start for weight $\alpha_k^{(i)}$: Preliminary standard (MLE) estimates.

The "pure document" assumption is testable

 An if and only if characterization of pure document i based on second-order latent moments Uspensky (1937); Bing, Bunea, Wegkamp (2025+, to come !)

$$\begin{split} \|\boldsymbol{\alpha}^{(i)}\|_0 &= \quad 1 &\iff \operatorname{tr}(\boldsymbol{\Gamma}^{(i)}) > 0; \\ \boldsymbol{\Gamma}^{(i)} &:= \quad \boldsymbol{\Gamma}_1^{(i)} + \boldsymbol{\Gamma}_2^{(i)} =: \sum_{k=1}^K \boldsymbol{\alpha}_k^{(i)} \boldsymbol{\theta}_k \boldsymbol{\theta}_k^\top - \left(\sum_{k=1}^K \boldsymbol{\alpha}_k^{(i)} \boldsymbol{\theta}_k\right) \left(\sum_{k=1}^K \boldsymbol{\alpha}_k^{(i)} \boldsymbol{\theta}_k\right)^\top \end{split}$$

Estimable first and second-order latent moments tailored to softmax mixtures.

$$\widehat{\Gamma}_1^{(i)} = \frac{1}{N} \sum_{\ell=1}^N \widehat{\Sigma}^{-1} Y_\ell^{(i)} (Y_\ell^{(i)})^\top \widehat{\Sigma}^{-1} - \widehat{\Sigma}^{-1}; \quad \widehat{\Sigma} = p^{-1} X^\top X.$$

Document $i: Y_1^{(i)}, \dots, Y_\ell^{(i)}, \dots, Y_N^{(i)}$ in \mathbb{R}^L . The rows of X are $N(0, \Sigma)$. Bing, Bunea, Niles-Weed, Wegkamp (2024, 2025 +)

The pure document assumption is testable!

Stay tuned ! 2025+

Instances of latent moment estimates in softmax mixtures

• Latent moments of the first coordinate = moments of $Z^{(i)} \sim \sum_{k=1} \alpha_k^{(i)} \delta_{\theta_{1k}}$.

$$m_r = \sum_{k=1}^K \alpha_k^{(i)} \theta_{1k}^r, \quad \text{ for each } 0 \le r \le 2K - 1.$$

• Latent moment estimator, for each $0 \le r \le 2K - 1$

$$\widehat{m}_r = \frac{1}{N} \sum_{\ell=1}^N h_r(Y_\ell^{(i)}),$$

for $Y_1^{(i)}, \ldots, Y_\ell^{(i)}, \ldots Y_N^{(i)}$ i.i.d. $\pi^{(i)}(\cdot \mid x)$, the softmax mixture of doc. i.

If support points x_1, \ldots, x_p i.i.d. $N(0, \Sigma)$, then

$$h_r(x) := h_r(x; \Sigma) = \|\Sigma^{-1/2} \boldsymbol{e}_1\|_2^r H_r\left(x^\top \Sigma^{-1} \boldsymbol{e}_1 / \|\Sigma^{-1/2} \boldsymbol{e}_1\|_2\right).$$

$$H_r(x) = r! \sum_{b=0}^{\lfloor r/2 \rfloor} \frac{(-1)^b}{b!(r-2b)!2^b} x^{r-2b}, \quad \forall x \in \mathbb{R}.$$

Identifiability of ensembles of softmax mixtures vs single mixture

- Single softmax mixtures (n = 1) are identifiable, when p is large, if:
 - \bullet $\min_{k \neq k'} \|\theta_k \theta_{k'}\|_2^2 \geq C \log K$;
 - \bullet min_k $\alpha_k > 0$:
 - $\bullet \ \min_{k \neq k'} |\theta_{1k} \theta_{1k'}| > \Delta.$

Constructive proof, via a population-level EM algorithm with population MoM warm start. Bing, Bunea, Niles-Weed, Wegkamp, 2025+

- 2 Ensembles of softmax mixtures (n > 1) are identifiable, when p is large, if:
 - $\min_{k \neq k'} \|\theta_k \theta_{k'}\|_2 > 0$;
 - Ensemble has pure documents.

To come, 2025+, stay tuned !

The power of the ensemble:

Separation conditions (n = 1) replaced by a testable condition, when n > 1. Mixtures can be sparse.

Into the LLM era

Document $i \to N$ tokens \to Contextually embedded into $v_1^{(i)}, \dots, v_N^{(i)} \in \mathbb{R}^L$.

Embedding dimension L very large: 384 or 768, or **much larger**.

- Vocabulary = a collection of agreed upon tokens.
- 2 Collection of documents = collection of samples in \mathbb{R}^{L} .
- Major gain: each document contains N contextually embedded vectors. BERT, ROBERTA, CAMEMBERT, ...

A simple interpretable MoE for embedded corpora

Document *i* representation: $v_1^{(i)}, \dots, v_N^{(i)} \in \mathbb{R}^L$.

Summarize document i probability distribution: continuous "topic model".

$$\sum_{k=1}^{K} \alpha_k^{(i)} \left(\sum_{j=1}^{q} \frac{\exp \boldsymbol{\theta}_k^{\top} \mu_j}{\sum_{j=1}^{q} \exp \boldsymbol{\theta}_k^{\top} \mu_j} \mathsf{N}(\mu_j, \sigma_j^2 \mathsf{I}) \right) = \sum_{j=1}^{q} \left(\sum_{k=1}^{K} \alpha_k^{(i)} \frac{\exp \boldsymbol{\theta}_k^{\top} \mu_j}{\sum_{j=1}^{q} \exp \boldsymbol{\theta}_k^{\top} \mu_j} \right) \mathsf{N}(\mu_j, \sigma_j^2 \mathsf{I})$$

$$=: \sum_{i=1}^{q} \pi_j^{(i)} \mathsf{N}(\mu_j, \sigma_j^2 \mathsf{I})$$

- Take q large: universal approximation results for infinite Gaussian mixtures.
- Parametrize π_i⁽ⁱ⁾ to reflect the relative alignment of μ_i's with direction θ_k.
- With q large:
 - ullet θ_k re-groups the many Gaussian means.
 - Each group around θ_k has weight $\alpha_k^{(i)}$.

Softmax mixture ensembles for fitting an MoE model to an embedded corpus

Embedded corpus = nN contextually embedded vectors in \mathbb{R}^{L} .

- - $x_1, \ldots, x_q \in \mathbb{R}^L$ yield a corpus-specific **new** dictionary.
 - Tokens in cluster j name the **new word** $x_j \in \mathbb{R}^L$.
- 2 Conditionally on x_1, \ldots, x_q , use EM to optimize

$$\sum_{i=1}^{n} \sum_{j=1}^{p} \widehat{\pi}_{j}^{(i)} \log \left\{ \sum_{k=1}^{K} \alpha_{k}^{(i)} \frac{\exp(\mathbf{x}_{j}^{\top} \boldsymbol{\theta}_{k})}{\sum_{\ell=1}^{p} \exp(\mathbf{x}_{\ell}^{\top} \boldsymbol{\theta}_{k})} \right\}$$

with Gaussian mixture proportions $\widehat{\pi}_{i}^{(i)}$, $j \in [p]$, $i \in [n]$.

Estimation of this MoE is estimation in softmax mixture ensembles!

Theory carries over, conditionally on x_1, \ldots, x_q . (Bing, Bunea, Wegkamp, 2025 +. To Come I)

Movie/game reviews revisited

Curated Dataset:

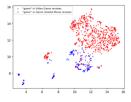
Content Type	Count
Movie Reviews	58
Game Reviews	58
Total	116

- Total number of tokens nN = 18,988.
- New dictionary size q = 5000.
- Embedding dimension L = 768.

Instances of reviews

- Movies: Final Fantasy film, Resident Evil movie, Street Fighter
- Games: Final Fantasy VIII, Metal Gear Solid, Tomb Raider III

Create new, contextually meaningful, embedded dictionary.

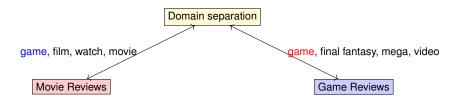


Instances of new "words".

- $game_1, \dots, game_M \in \mathbb{R}^L$: cluster centers of game as in game reviews.
- game₁,..., game_D $\in \mathbb{R}^L$: cluster centers of game as in movie reviews.

EM on softmax mixture ensembles on new dictionary.

Domain recovery via MoE on contextually embedded text



$\widehat{\theta}_1$: Video game reviews.

```
['final', 'final', 'fantasy', 'fantasy', 'fantasy', 'mega', 'viii',
'fantasy', 'video', 'video', 'prey', 'col', 'mega']
```

$\widehat{\theta}_2$: Movie (based on video-games) reviews.

```
[ 'see watch seeing', 'rendered backgrounds roles', 'movie', 'film', 'story wrote stories', 'movie film', 'game' ]
```

- Ocrpus summarization via topic models in the LLM era: still valid!
 - Standard (non-parametrized): mixing measure $\sum_{k=1}^K \bar{\alpha}_k A_k$, with $A_k \in \Delta_p$. Broad strokes summary.
 - Softmax-parametrized: mixing measure $\sum_{k=1}^K \bar{\alpha}_k \delta_{\theta_k}$, with $\theta_k \in \mathbb{R}^L$. Broad strokes, dimension stabilized summary. No local context.
 - Automatic document clustering by domain: mixture weight sparsity.

- Corpus summarization via softmax-mixture ensembles within MoE's:
 - Contextually interpretable latent domain parameters θ_k .
 - Automatic domain cluster building: mixture weight sparsity.
 - Contextually-interpretable mixing measure-type summaries

$$\sum_{k=1}^K \bar{\alpha}_k \delta_{\theta_k}.$$

Key to developing new metrics for comparing LLM and Human corpora.

Bunea, Manole, Wegkamp, Thickstun et al.; 2025+ To come!

Bibliography

- Learning large softmax mixtures with warm start EM, 2024/2025+
 ArXiv; Bing, X.; Bunea, F., Niles-Weed. J., Wegkamp, M.
- Estimation and Inference for the Wasserstein distance between mixing measures in topic models; 2024
 Bernoulli: Bina, X.; Bunea, F., Niles-Weed, J.
- Likelihood estimation of sparse topic distributions in topic models and its applications to Wasserstein document distance calculations; 2022, Annals of Stats. Bing, X., B., F., Strimas-Mackey, S., Wegkamp, M.
- A fast algorithm with minimax optimal guarantees for topic models with an unknown number of topics; 2020 (a).
 Bernoulli, Bing, X., B., F., Wegkamp, M.
- Optimal estimation of sparse topic models; 2020 (b).
 JMLR, Bing, X., B., F., Wegkamp, M.

To Come!

- Ensembles of softmax mixtures with applications to LLM output summarization, 2025+ Bing, X.; Bunea, F., Betache, N, Wegkamp, M; Wu, W.
- New metrics for LLM evaluation, 2025+
 Bunea, F., Manole, T., Wegkamp, M., Thickstun, J., et al.

Thank you !

Theory for mixture component estimates

Minimax adaptive estimation of mixture components $A_{\cdot k} \in \Delta_p$

In a topic model with anchor words we can construct estimators such that, under assumptions,

$$\max_{1 \leq k \leq K} |\widehat{A}_{\cdot k} - A_{\cdot k}||_1 \lesssim \sqrt{\frac{pK}{nN}},$$

w.h.p., for p and K allowed to grow with n.

B., Bing, Wegkamp (2018).

Theory for mixture weight estimators in topic models

- Enough to provide theory for each document.
- Assume that the word count vector in one document of length N is

$$Y \sim \text{Multinomial}_{\rho}(N; \pi = \sum_{k=1}^{K} \alpha_k A_{\cdot k}).$$

• Given minimax optimal estimators $\widehat{A}_{.k}$, construct

$$\widehat{\alpha}_{\mathrm{mle}} := \mathrm{argmax}_{\alpha \in \Delta_K} \sum_{j=1}^{\rho} \, Y_j \log \left(\widehat{A}_{j\cdot}^{\top} \alpha \right),$$

the MLE (cross-entropy) estimator of the mixture weight vector α .

It is automatically sparse if α is sparse!

Intuition: the MLE of a sparse mixture weight vector is sparse w.p. 1

$$(Y_1, Y_2, Y_3) \sim \mathsf{Multinomial}_3(\textit{N}, \pi),$$

$$\pi = \sum_{k=1}^2 \alpha_k \textit{A}_k, \quad \mathsf{with} \quad \textit{A}_1 = (\textit{a}_1, \textit{a}_2, 0)^\top, \quad \textit{A}_2 = (0, 0, 1)^\top, \quad \textit{a}_1 + \textit{a}_2 = 1, \quad \textit{a}_1, \textit{a}_2 \geq 0.$$

$$Y_1 + Y_2 \sim \mathsf{Bin}(\textit{N}, \alpha_1), \quad Y_3 = \mathsf{Bin}(\textit{N}, \alpha_2).$$

$$\widehat{\alpha}_{\text{mle},1} = \frac{Y_1 + Y_2}{N}, \quad \widehat{\alpha}_{\text{mle},2} = \frac{Y_3}{N}.$$

If $\alpha_k = 0$, for some $k \in \{1, 2\}$, then $\widehat{\alpha}_{\mathsf{mle}, k} = 0$, w.p. 1.

If data is generated from a sparse discrete mixture, $\widehat{\alpha}_{mle}$ can have zero entries.

Sparsity and sparse rate adaptation of the MLE

If the mixture components $\widehat{A}_{\cdot k}$; $k \in [K]$ satisfy an incoherence-type condition then:

(1) The MLE $\ \widehat{\alpha}_{mle}$ has at least as many zeroes as the true mixture weight vector $\ \alpha$:

$$supp(\widehat{\alpha}_{mle}) \subseteq supp(\alpha) =: s, w.h.p.$$

(2) The MLE $\widehat{\alpha}_{mle}$ is minimax-rate adaptive

$$\|\widehat{\alpha}_{\mathrm{mle}} - \alpha\|_1 = \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{s\log K}{N}} + \sqrt{\frac{pK}{nN}}\right).$$

Inference for potentially sparse mixture weights

A one step update of the $\mbox{ MLE } \ \widehat{\alpha}_{mle} \in \Delta_{\mbox{\it K}}$ for efficient estimation of (sparse) $\alpha \in \Delta_{\mbox{\it K}}$:

$$\widetilde{\alpha} = \widehat{\alpha}_{\text{mle}} + \widehat{V}^+ \Psi(\widehat{\alpha}_{\text{mle}}).$$

ASN estimators of sparse mixture weights

Under the General Regime,

$$\lim_{n,N\to\infty}\sqrt{N}\,\Sigma_{\alpha}^{+\frac{1}{2}}\left(\widetilde{\alpha}-\alpha\right)\overset{d}{\to}\mathcal{N}_{K}\left(0,\begin{bmatrix}\boldsymbol{I}_{K-1}&\boldsymbol{0}\\\boldsymbol{0}&\boldsymbol{0}\end{bmatrix}\right).$$

 $\Sigma_\alpha \geq 0$ reduces to the asymptotically efficient covariance matrix under the Classical Regime.

$$\widehat{V} := \sum_{j \in \widehat{J}} \frac{1}{\widehat{A}_{j.}^{\top} \widehat{\alpha}_{\text{mle}}} \widehat{A}_{j.} \widehat{A}_{j.}^{\top} \qquad \quad \Psi(\widehat{\alpha}_{\text{mle}}) := \sum_{j \in \widehat{J}} \frac{\widehat{\pi}_{j} - \widehat{A}_{j.}^{\top} \widehat{\alpha}_{\text{mle}}}{\widehat{A}_{j.}^{\top} \widehat{\alpha}_{\text{mle}}} \widehat{A}_{j.} \qquad \quad \widehat{J} =: \operatorname{supp}(\widehat{\pi}).$$

Classical Regime	General Regime
(a) A is known	(a') A is estimated from n samples of size N each
(b) p is independent of N	(b') p can grow with N (and n)
(c) $0 < \alpha_k < 1$, for all $k \in [K]$	(c') $lpha\in\Delta_{\mathcal{K}}$ can be sparse.
(d) $\pi_j > 0$, for all $j \in [p]$	(d') $\pi \in \Delta_{\mathcal{P}}$ can be sparse.

EM initialization in softmax mixture ensembles with random design

- Olassic: MoM parameter estimates. Bing, B., Niles-Weed and Wegkamp; 2024+
 - Estimate many latent moments of mixing measures $\rho:=\sum_{k=1}^K \alpha_k \delta_{\theta_k}$ via softmax mixture-tailored functionals of the data.

 Use Lindsay's Lemma to find MoM **parameter estimates.**
 - Parametric rates if atoms θ_k differ in their first coordinate. Warm start!
 - Behavior deteriorates rapidly when K increases, even for moderate L.
- Commonly used: multiple random initializations. B, B, N-W, W; 2025+
 - Estimate only second-order latent moments of the mixing measure.
 - Estimate K-dim sub-space in \mathbb{R}^L spanned by $\theta_1, \dots, \theta_K$. Initialize in this sub-space; success in only $\exp(K)$ draws.
- 3 Specific to softmax mixtures ensembles: anchor document assumption.

$$m_r = \sum_{k=1}^K \alpha_k \theta_{1k}^r, \ 0 \le r \le 2K-1$$
 and $m_{r1;i} := \sum_{k=1}^K \alpha_k (\theta_{1k})^r \theta_{ik}, \ 0 \le r \le K-1 \ \text{and} \ 2 \le i \le L.$

Lemma (Lindsay '89, Lindsay and Basak '93)

If $\min_{k \neq k'} |\theta_{1k} - \theta_{1k'}| > 0$, then the moments and mixed moments of the **mixing measure** $\rho := \sum_{k=1}^K \alpha_k \delta_{\theta_k}$ uniquely determine $\alpha \in \Delta_K$ and $\theta_1, \ldots, \theta_K \in \mathbb{R}^L$, up to some permutation, as shown below.

The first coordinates $\theta_{11}, \theta_{12}, \dots, \theta_{1K}$ are the unique K roots of the degree K polynomial P(x), in one variable, given by

$$P(x) := \det \begin{pmatrix} 1 & m_1 & \dots & m_K \\ m_1 & m_2 & \dots & m_{K+1} \\ \vdots & \vdots & & \vdots \\ m_{K-1} & m_K & \dots & m_{2K-1} \\ 1 & x & \dots & x^K \end{pmatrix}.$$

2 For each $k \in [K]$, the remaining L-1 coordinates θ_{ik} , $i \in \{2, \ldots, L\}$ are uniquely given by

$$\theta_{ik} = \begin{pmatrix} m_{01;i} \\ \vdots \\ m_{(K-1)1;i} \end{pmatrix}^{\top} \begin{pmatrix} 1 & m_1 & \dots & m_{K-1} \\ m_1 & m_2 & \dots & m_K \\ \vdots & \vdots & & \vdots \\ m_{K-1} & m_K & \dots & m_{2K-2} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ \theta_{1k} \\ \vdots \\ \theta_{K-1}^{K-1} \end{pmatrix}.$$

3 The mixture weight vector α is uniquely given by

$$\alpha = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \theta_{11} & \theta_{12} & \dots & \theta_{1K} \\ \vdots & \vdots & & \vdots \\ \theta_{11}^{K-1} & \theta_{12}^{K-1} & \dots & \theta_{1K}^{K-1} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ m_1 \\ \vdots \\ m_{K-1} \end{pmatrix}.$$

Topic model = a non-parametrized ensemble of discrete mixtures

Data: Independent
$$Y^{(i)} =: (Y_1^{(i)}, \dots, Y_p^{(i)}) \sim \text{Multinomial}_p(N, \pi^{(i)}), \quad i \in [n].$$

$$\mathbb{P}(\mathsf{Word}\ j\ \mathsf{in}\ \mathsf{doc}\ i) \qquad \underbrace{\sum_{Topic\ model\ assumption}^{K}}_{\mathsf{Topic}\ model\ assumption} \qquad \sum_{k=1}^{K}\mathbb{P}(\mathsf{Topic}\ k\ \mathsf{in}\ \mathsf{doc}\ i\)\ \mathbb{P}(\mathsf{Word}\ j\ |\ \mathsf{Topic}\ k)$$

$$\pi_{j}^{(i)} \qquad \qquad = \qquad \sum_{k=1}^{K}\alpha_{k}^{(i)}\mathsf{A}_{jk}, \quad j\in[p], \quad i\in[n]$$

$$\pi^{(i)} \qquad \qquad = \qquad \sum_{k=1}^{K}\alpha_{k}^{(i)}\mathsf{A}_{-k}, \quad i\in[n]$$

$$\underbrace{\Pi}_{p\times n} \qquad \qquad = \qquad \underbrace{\mathcal{A}}_{p\times K}\underbrace{\mathcal{T}}_{K\times n}.$$

- n = number of docs in the corpus; p = dictionary size.
- $\pi^{(i)} \in \Delta_p$ true word distribution in document *i*.
 - $\alpha^{(i)} \in \Delta_K$: Document specific mixture weights vector.
 - $A_{\cdot k} \in \Delta_p$ mixture component vector, common to the corpus.