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What if the random variables of interest have heavy tails?

@ For the purpose of this talk, a random variable Z has heavy-tailed distribution if
E|ZIK = 0o

for some k > 2.
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@ Dao Ha Fuk and Sergei Nagaev (1971): let X, ..., X, be i.i.d.centered random variables with
p > 2 finite moments. Then
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@ E. Rio (2017), M. Bakhshizadeh, A. Maleki, V. H. de la Pena (2022) proved bounds implying
that

2 » E max; | Xj|P

P X|>t| <exp| ———--—-—— Co (6
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Fuk-Nagaev inequalities

@ Uwe Einmahl and Deli Li (2007); Radek Adamczak (2008) proved that for Banach
space-valued centered random variables,
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where B = supys, —1 2714 E(f, X))".



Fuk-Nagaev inequalities

@ Rio’s and Einmahl and Li’s inequalities can be used to prove versions of the bounded
Law of the Iterated Logarithm.
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Moment inequalities

@ Haskell Rosenthal’s inequality (1970): let X, ..., X, be i.i.d.centered random variables with
p > 2 finite moments. Then
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@ Haskell Rosenthal’s inequality (1970): let X, ..., X, be i.i.d.centered random variables with
p > 2 finite moments. Then

n n 1/2 n 1/p
EVP S x| < cle) (ZEXE) + (ZEW’>
j=1 j=1 j=1

@ Johnson, Schechtman and Zinn (1985): best possible C(p) =< Iog‘zp).
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Moment inequalities
@ Alternatively, one may ask for Cy(p) and Cx(p) such that
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Moment inequalities
@ Alternatively, one may ask for Cy(p) and Cx(p) such that

1/2
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Pinelis, Utev: Cy(p) < /P, C2(p) =< p are not improvable in general.

@ Nagaev, Pinelis (1977): ‘ just integrate (a variant of) Fuk-Nagaev inequality! ‘

@ Up to absolute constants, (+) implies Bernstein’s inequality: if | X;| < U a.s. for all j, then
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Moment inequalities

@ Alternatively, one may ask for C;(p) and C»(p) such that
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Pinelis, Utev: Ci(p) < /P, C2(p) < p are not improvable in general.

@ Nagaeyv, Pinelis (1977): ‘ just integrate (a variant of) Fuk-Nagaev inequality! ‘

@ Up to absolute constants, (+) implies Bernstein’s inequality: if | X;| < U a.s. for all j, then

P ‘XH:X/‘>Z‘ <2exp<t2/2>
par > EX? + Ut/3

@ In this talk, we will show that it is possible to have C;(p) < /P, Ca(p) < % if

1/p
Bmax X < (og(p) " (Emax|¥1?)
J J
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o Example: ;,..., Y, € RY, EY; =0, EV;Y =¥, and X; = 1 (YijT—Z):
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(] LetX1,..

., Xn € C9*9 pe independent, centered, self-adjoint random matrices
@ How large is the spectral norm ‘Z;; Xi||?

o Example: ;,..., Y, € RY, EY; =0, EV;Y] =¥, and X; = 1 (Y,Yf—i):
1 n
Sy x| <
n “ ]
]:
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@ "Matrix Bernstein’s" inequality (Ahlswede and Winter; Oliveira; Tropp):
If |Xj|| < U a.s., then

2
P >t <2dexp ,i
B2 + Ut/3

where B2 > HEIL ]EX/?H is the so-called "matrix variance."

n

>

=




"Matrix Bernstein’s" inequality (Ahlswede and Winter; Oliveira; Tropp):

If || Xi|| < Uas., then
2
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where B2 > HEIL ]EX/?H is the so-called "matrix variance."
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"Matrix Rosenthal’s" inequality: Chen, Gittens, Tropp (2011), Dirksen’s Ph.D. thesis (2011),
Junge and Zeng (2011). Let p > 2, then
P

EV/P < V/GBn+ GE'/P max |1 X[P
J
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where g = max(p, log(ed)).
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o Covariance estimation: if E'/P max; || Y;[|?P = d||Z]|, then an - ZH <e||Z| aslong as

1
nz E—zdlog(d).
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Boundedness and the effective rank

@ Covariance estimation: what if ¥ can be well approximated by a matrix with small rank? And
what if || ;|| is unbounded (but, say, Ee*! /I < oo for some A > 0)?
@ Effective rank:

@ Results in this direction were obtained by M. (2011), Koltchinskii (2011), Klochkov and
Zhivotovskiy (2018). Assume that 327 EX? < Vp, BS = || Va||, M := max; || Xj]|.

Then
P X||>t] <Ci-r(Vn)exp| —Co—5———
' B2+ [[M][,, t

J=1




Main results: Fuk-Nagaev-type inequality

Theorem (J+M+S+W)

Let X1, ..., Xn be centered self-adjoint random matrices such that E|| X1 ||P < oo and

n
DEXP Vo, Bi=|Val, M:= m]_ax||X]-||
j=1

Then

n
DX

=

d

> t) < r(Vn) exp (—Cg ) +P(M > t/80)

- ( Iogl()ep))zp (ETAf)Z
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B2 + tEM




Main results: Rosenthal-type inequality

Integrating the Fuk-Nagaev inequality, we deduce the following

Corollary
Let
n
DSTEXP Vo, Bi=|Val, M:= mjaXII)Q'II
j=1
Forallp>1,
m P
EVP S x| < vaBh+ gEM+ —P— (mMmp)'/P
;’ SRR +|og(eP)( )

where g = max(p, log(r(Vn))).




Main results: Rosenthal-type inequality

Integrating the Fuk-Nagaev inequality, we deduce the following

Corollary
Let
n
D EXP < Vo, Bi=|Vall, M:=max|X]
= !
Forallp>1,
n p
EVPSX|| < vGBn+ qEM + —P— (mMP)'/P
,-221: | > Vaseta +|og(ep)( )
where g = max(p, log(r(Vn))).
@ Compare to
n p
EVPST X < vaBa+q(EMP)'/P,

j=1

q = max(p, log(ed)).
e IfEM <« EV/PMP then (x) improves the scalar version of Rosenthal’s inequality.
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Applications to covariance estimation

@ Tikhomirov (2016): let © = /; and assume that sup, E |( Y7, v)|P < co where p > 4. Then
with probability at least 1 — 1/n,
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@ Building on results of Abdalla and Zhivotovskiy (2023), one can show the following: assume
that r(X) < cn and that for some p > 4,

EVP(Y, V)P < kEVZ(Y,v)?
Then with probability at least 1 — 1/n,

r(x)
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Applications to covariance estimation

@ Building on results of Abdalla and Zhivotovskiy (2023), one can show the following: assume
that r(X) < cn and that for some p > 4,

E'P|(Y,v)[P < kEV2(Y,v)?
Then with probability at least 1 — 1/n,

max; || Y; rx
£ <o, mIE sy )
n

@ What about bounds in Lp? Using Rosenthal’s inequality, we prove the following bound:

Corollary

o LIRS 11#)%/? r(:)
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Applications to covariance estimation

@ Assume that r(¥) < cnand that for some p > 4,

EVP (Y, V)P < kE'/2 (Y, v)?

e Let u;, §j be the eigenvectors of ¥, £,

g1 =X — X2 and g = min()\j_1 — )\j, )‘j —

@ "Relative rank"
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Corollary

Aj+1)

. 2 [N [r(Z) ri(x)
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Idea of the proof of Fuk-Nagaev inequality

@ Xj,...,Xp are centered self-adjoint random matrices such that E|| X; ||P < oo and
M := max; || Xj||.
n
P >t ) <
j=1
@ "Double truncation:" set U < EM, y = ct and
~ 1 2
X =x1lIx1 < U, A”=xHU<|X| <y}, AP =xH{IX]>y}
@ Some work is required to prove that

IP’( kz";A]U) > t/16> N (logizp))zp (EI—AZPY

Main tools are the Hoffmann-Jargensen + Talagrand’s comparison inequalities between sums
and maxima.




Thank you for listening!




