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Concentration of measure

Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are “essentially constant”

This idea can serve as a "bridge" between random and deterministic quantities.

Examples include the Gaussian (Borell-TIS) inequality, bounded difference (McDiarmid’s)
inequality, Talagrand’s inequality for product measures, matrix Bernstein’s inequality, etc.
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For example, if X = (X1, . . . ,Xn) ∼ N(0, In) then E‖X‖2 ∈
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,
√
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and∣∣∣‖X‖2 − E‖X‖2

∣∣∣ ≤ √2t

with probability at least 1− e−t .
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If W ∈ Rn×p , n ≥ p, has i.i.d. normal coordinates, then∥∥∥∥∥W T W
n
− Ip

∥∥∥∥∥ ≤
√

p
n

+

√
2t
n

with probability at least 1− e−t ("quantitative version" of Bai-Yin theorem).
Often, a.s. boundedness or exponential integrability assumptions are imposed.

What if the random variables of interest have heavy tails?

For the purpose of this talk, a random variable Z has heavy-tailed distribution if

E|Z |k =∞
for some k > 2.
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Fuk-Nagaev inequalities

(Sub)-Gaussian concentration: let X1, . . . ,Xn be independent, Xj ∼ N(0, σ2
j ). Then

P

∣∣∣ n∑
j=1

Xj

∣∣∣ ≥ t

 ≤ 2 exp

(
t2

2
∑n

j=1 σ
2
j

)

Dao Ha Fuk and Sergei Nagaev (1971): let X1, . . . ,Xn be i.i.d.centered random variables with
p ≥ 2 finite moments. Then

P

∣∣∣ n∑
j=1

Xj

∣∣∣ ≥ t

 ≤ 2 exp

(
−C1(p)

t2∑n
j=1 EX 2

j

)
+ P
(

max
j
|Xj | > t/4

)

+ C2(p)

(∑n
j=1 E|Xj |p

tp

)2

E. Rio (2017), M. Bakhshizadeh, A. Maleki, V. H. de la Pena (2022) proved bounds implying
that

P

∣∣∣ n∑
j=1

Xj

∣∣∣ ≥ t

 ≤ exp

(
−

t2

(2 + δ)
∑n

j=1 EX 2
j

)
+ C2(δ)pp Emaxj |Xj |p

tp

Rio’s and Einmahl and Li’s inequalities can be used to prove versions of the bounded
Law of the Iterated Logarithm.
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Fuk-Nagaev inequalities

Uwe Einmahl and Deli Li (2007); Radek Adamczak (2008) proved that for Banach
space-valued centered random variables,

P

∥∥∥ n∑
j=1

Xj

∥∥∥ ≥ (1 + η)E
∥∥∥ n∑

j=1

Xj

∥∥∥+ t

 ≤ exp

(
−

t2

(2 + δ)B2
n

)

+ C(η, δ, p)

∑n
j=1 E‖Xj‖p

tp

where B2
n = sup‖f‖∗=1

∑n
j=1 E

〈
f ,Xj

〉2.

Rio’s and Einmahl and Li’s inequalities can be used to prove versions of the bounded
Law of the Iterated Logarithm.
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Moment inequalities

Haskell Rosenthal’s inequality (1970): let X1, . . . ,Xn be i.i.d.centered random variables with
p ≥ 2 finite moments. Then

E1/p
∣∣∣ n∑

j=1

Xj

∣∣∣p ≤ C(p)


 n∑

j=1

EX 2
j

1/2

+

 n∑
j=1

E|Xj |p
1/p



Johnson, Schechtman and Zinn (1985): best possible C(p) � p
log(p)

.
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Moment inequalities

Alternatively, one may ask for C1(p) and C2(p) such that

E1/p
∣∣∣ n∑

j=1

Xj

∣∣∣p ≤ C1(p)

 n∑
j=1

EX 2
j

1/2

+ C2(p)

(
Emax

j
|Xj |p

)1/p
(∗)

Pinelis, Utev: C1(p) � √p, C2(p) � p are not improvable in general.

Nagaev, Pinelis (1977): just integrate (a variant of) Fuk-Nagaev inequality!

Up to absolute constants, (∗) implies Bernstein’s inequality: if |Xj | ≤ U a.s. for all j , then

P

∣∣∣ n∑
j=1

Xj

∣∣∣ ≥ t

 ≤ 2 exp

(
−

t2/2∑
j EX 2

j + Ut/3

)

In this talk, we will show that it is possible to have C1(p) � √p, C2(p) � p
log(p)

if

Emax
j
|Xj | . (log(p))−1

(
Emax

j
|Xj |p

)1/p
.
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j = Σ, and Xj = 1
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n
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"Matrix Bernstein’s" inequality (Ahlswede and Winter; Oliveira; Tropp):
If ‖Xj‖ ≤ U a.s., then

P

∥∥∥∥∥∥
n∑

j=1

Xj

∥∥∥∥∥∥ ≥ t

 ≤ 2d exp

(
−

t2/2
B2

n + Ut/3

)

where B2
n ≥

∥∥∥∑n
j=1 EX 2

j

∥∥∥ is the so-called "matrix variance."

"Matrix Rosenthal’s" inequality: Chen, Gittens, Tropp (2011), Dirksen’s Ph.D. thesis (2011),
Junge and Zeng (2011). Let p ≥ 2, then

E1/p

∥∥∥∥∥∥
n∑

j=1

Xj

∥∥∥∥∥∥
p

.
√

qBn + qE1/p max
j
‖Xj‖p

where q = max(p, log(ed)).
These results are useful tools in statistical applications: matrix completion, community
detection, etc.
Covariance estimation: if E1/p maxj ‖Yj‖2p � d‖Σ‖, then

∥∥∥Σ̂n − Σ
∥∥∥ ≤ ε‖Σ‖ as long as

n &
1
ε2

d log(d).
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Boundedness and the effective rank

Covariance estimation: what if Σ can be well approximated by a matrix with small rank? And

what if ‖Yj‖ is unbounded (but, say, Eeλ‖Yj‖2
<∞ for some λ > 0)?

Effective rank:

r(A) =
tr(A)

‖A‖

Results in this direction were obtained by M. (2011), Koltchinskii (2011), Klochkov and
Zhivotovskiy (2018). Assume that

∑n
j=1 EX 2

j � Vn, B2
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Main results: Fuk-Nagaev-type inequality

Theorem (J+M+S+W)
Let X1, . . . ,Xn be centered self-adjoint random matrices such that E‖X1‖p <∞ and

n∑
j=1

EX 2
j � Vn, B2

n = ‖Vn‖, M := max
j
‖Xj‖

Then
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Main results: Rosenthal-type inequality

Integrating the Fuk-Nagaev inequality, we deduce the following

Corollary
Let

n∑
j=1

EX 2
j � Vn, B2

n = ‖Vn‖, M := max
j
‖Xj‖

For all p ≥ 1,

E1/p

∥∥∥∥∥∥
n∑

j=1

Xj

∥∥∥∥∥∥
p

.
√

qBn + q EM +
p

log(ep)

(
EMp)1/p (∗)

where q = max(p, log(r(Vn))).

Compare to

E1/p

∥∥∥∥∥∥
n∑

j=1

Xj
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p

.
√

qBn + q
(
EMp)1/p

,

q = max(p, log(ed)).

If EM � E1/pMp then (∗) improves the scalar version of Rosenthal’s inequality.
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Applications to covariance estimation

Σ̂n = 1
n
∑n

j=1 Yj Y T
j , and

∥∥∥Σ̂n − Σ
∥∥∥ ≤ ε‖Σ‖ as long as

n &
1
ε2

d log(d)

Questions: (a) can log(d) be removed? (b) is n & 1
ε2 r(Σ) sufficient?

Yes! - for Gaussian covariance operators, Koltchinskii and Lounici obtained very general,
optimal bounds.

For the log-concave and heavy-tailed cases, results by
Bourgain; Rudelson; Vershynin, Srivastava; Adamczak, Litvak, Pajor, Tomczak-Jaegermann,
Guédon; Mendelson, Paouris.
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Tikhomirov (2016): let Σ = Id and assume that supv E |〈Y1, v〉|p <∞ where p > 4. Then
with probability at least 1− 1/n,

∥∥∥Σ̂n − Σ
∥∥∥ .p

maxj ‖Yj‖2

n
+

√
d
n
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Building on results of Abdalla and Zhivotovskiy (2023), one can show the following: assume
that r(Σ) < cn and that for some p > 4,

E1/p |〈Y , v〉|p ≤ κE1/2 〈Y , v〉2

Then with probability at least 1− 1/n,

∥∥∥Σ̂n − Σ
∥∥∥ .p,κ

maxj ‖Yj‖2

n
+ ‖Σ‖

√
r(Σ)

n

What about bounds in Lp? Using Rosenthal’s inequality, we prove the following bound:
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Applications to covariance estimation

Assume that r(Σ) < cn and that for some p > 4,

E1/p |〈Y , v〉|p ≤ κE1/2 〈Y , v〉2

Let uj , ûj be the eigenvectors of Σ, Σ̂n,

g1 = λ1 − λ2 and gj = min(λj−1 − λj , λj − λj+1)

"Relative rank"

rj (Σ) =
∑
i 6=j

λi

|λi − λj |
+
λj

gj
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Idea of the proof of Fuk-Nagaev inequality

X1, . . . ,Xn are centered self-adjoint random matrices such that E‖X1‖p <∞ and
M := maxj ‖Xj‖.

P

∥∥∥∥∥∥
n∑

j=1

Xj

∥∥∥∥∥∥ ≥ t

 ≤?

"Double truncation:" set U � EM, y = ct and

X̃j = Xj I{‖Xj‖ ≤ U}, ∆
(1)
j = Xj I{U < ‖Xj‖ ≤ y}, ∆

(2)
j = Xj I{‖Xj‖ > y}

Some work is required to prove that

P

(∥∥∥∥∥
n∑

k=1

∆
(1)
j

∥∥∥∥∥ > t/16

)
.

(
p

log(p)

)2p (EMp

tp

)2

Main tools are the Hoffmann-Jørgensen + Talagrand’s comparison inequalities between sums
and maxima.
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Thank you for listening!


