Probabilistic Inequalities for Sums of Heavy-Tailed Random Matrices

Stas Minsker (University of Southern California)

September 19, 2025

"Mathematical Statistics in the Information Age" Conference

Research supported by DMS CAREER-2045068

based on a joint work in with Moritz Jirak, Yiqiu Shen and Martin Wahl

Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are "essentially constant"

• Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are "essentially constant"

• This idea can serve as a "bridge" between random and deterministic quantities.

• Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are "essentially constant"

- This idea can serve as a "bridge" between random and deterministic quantities.
- Examples include the Gaussian (Borell-TIS) inequality, bounded difference (McDiarmid's) inequality, Talagrand's inequality for product measures, matrix Bernstein's inequality, etc.

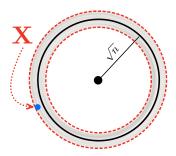
Concentration of measure phenomenon formalizes the idea that

nice functions of many independent random variables are "essentially constant"

- This idea can serve as a "bridge" between random and deterministic quantities.
- Examples include the Gaussian (Borell-TIS) inequality, bounded difference (McDiarmid's) inequality, Talagrand's inequality for product measures, matrix Bernstein's inequality, etc.
- For example, if $\mathbf{X} = (X_1, \dots, X_n) \sim N(0, I_n)$ then $\mathbb{E} \|\mathbf{X}\|_2 \in \left[\frac{n}{\sqrt{n+1}}, \sqrt{n}\right]$ and

$$\left|\|\mathbf{X}\|_2 - \mathbb{E}\|\mathbf{X}\|_2\right| \le \sqrt{2t}$$

with probability at least $1 - e^{-t}$.



• For example, if $\mathbf{X}=(X_1,\dots,X_n)\sim N(0,I_n)$ then $\mathbb{E}\|\mathbf{X}\|_2\in\left[\frac{n}{\sqrt{n+1}},\sqrt{n}\right]$ and

$$\left|\|\mathbf{X}\|_2 - \mathbb{E}\|\mathbf{X}\|_2\right| \le \sqrt{2t}$$

with probability at least $1 - e^{-t}$.

• If $\mathbf{W} \in \mathbb{R}^{n \times p}$, $n \ge p$, has i.i.d. normal coordinates, then

$$\left\|\frac{W^TW}{n}-I_p\right\|\leq \sqrt{\frac{p}{n}}+\sqrt{\frac{2t}{n}}$$

with probability at least $1 - e^{-t}$ ("quantitative version" of Bai-Yin theorem).

• For example, if $\mathbf{X}=(X_1,\dots,X_n)\sim N(0,I_n)$ then $\mathbb{E}\|\mathbf{X}\|_2\in\left[\frac{n}{\sqrt{n+1}},\sqrt{n}\right]$ and

$$\left|\|\mathbf{X}\|_2 - \mathbb{E}\|\mathbf{X}\|_2\right| \le \sqrt{2t}$$

with probability at least $1 - e^{-t}$.

• If $\mathbf{W} \in \mathbb{R}^{n \times p}$, $n \ge p$, has i.i.d. normal coordinates, then

$$\left\|\frac{W^TW}{n}-I_p\right\|\leq \sqrt{\frac{p}{n}}+\sqrt{\frac{2t}{n}}$$

with probability at least $1 - e^{-t}$ ("quantitative version" of Bai-Yin theorem).

• Often, a.s. boundedness or exponential integrability assumptions are imposed.

What if the random variables of interest have heavy tails?

• For example, if $\mathbf{X}=(X_1,\dots,X_n)\sim N(0,I_n)$ then $\mathbb{E}\|\mathbf{X}\|_2\in\left[\frac{n}{\sqrt{n+1}},\sqrt{n}\right]$ and

$$\left|\|\mathbf{X}\|_2 - \mathbb{E}\|\mathbf{X}\|_2\right| \le \sqrt{2t}$$

with probability at least $1 - e^{-t}$.

• If $\mathbf{W} \in \mathbb{R}^{n \times p}$, $n \ge p$, has i.i.d. normal coordinates, then

$$\left\|\frac{W^TW}{n}-I_p\right\|\leq \sqrt{\frac{p}{n}}+\sqrt{\frac{2t}{n}}$$

with probability at least $1 - e^{-t}$ ("quantitative version" of Bai-Yin theorem).

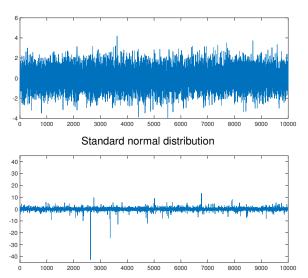
• Often, a.s. boundedness or exponential integrability assumptions are imposed.

What if the random variables of interest have heavy tails?

• For the purpose of this talk, a random variable Z has heavy-tailed distribution if

$$\mathbb{E}|Z|^k = \infty$$

for some k > 2.



Student's t-distribution with 3 d.f.

• (Sub)-Gaussian concentration: let X_1,\dots,X_n be independent, $X_j\sim N(0,\sigma_j^2)$. Then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq 2 \exp\left(\frac{t^{2}}{2 \sum_{j=1}^{n} \sigma_{j}^{2}}\right)$$

• (Sub)-Gaussian concentration: let X_1, \dots, X_n be independent, $X_j \sim N(0, \sigma_i^2)$. Then

$$\mathbb{P}\left(\Big|\sum_{j=1}^{n}X_{j}\Big| \geq t\right) \leq 2\exp\left(\frac{t^{2}}{2\sum_{j=1}^{n}\sigma_{j}^{2}}\right)$$

Dao Ha Fuk and Sergei Nagaev (1971): let X₁,..., X_n be i.i.d.centered random variables with p ≥ 2 finite moments. Then

$$\begin{split} \mathbb{P}\Bigg(\Big|\sum_{j=1}^n X_j\Big| \geq t\Bigg) \leq 2\exp\left(-C_1(p)\frac{t^2}{\sum_{j=1}^n \mathbb{E} X_j^2}\right) + \mathbb{P}\bigg(\max_j |X_j| > t/4\bigg) \\ &+ C_2(p)\left(\frac{\sum_{j=1}^n \mathbb{E} |X_j|^p}{t^p}\right)^2 \end{split}$$

• (Sub)-Gaussian concentration: let X_1, \dots, X_n be independent, $X_j \sim N(0, \sigma_i^2)$. Then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq 2 \exp\left(\frac{t^{2}}{2\sum_{j=1}^{n} \sigma_{j}^{2}}\right)$$

Dao Ha Fuk and Sergei Nagaev (1971): let X₁,..., X_n be i.i.d.centered random variables with p ≥ 2 finite moments. Then

$$\begin{split} \mathbb{P}\left(\left|\sum_{j=1}^{n}X_{j}\right| \geq t\right) \leq 2\exp\left(-C_{1}(\rho)\frac{t^{2}}{\sum_{j=1}^{n}\mathbb{E}X_{j}^{2}}\right) + \mathbb{P}\left(\max_{j}|X_{j}| > t/4\right) \\ + C_{2}(\rho)\left(\frac{\sum_{j=1}^{n}\mathbb{E}|X_{j}|^{\rho}}{t^{\rho}}\right)^{2} \end{split}$$

 E. Rio (2017), M. Bakhshizadeh, A. Maleki, V. H. de la Pena (2022) proved bounds implying that

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq \exp\left(-\frac{t^{2}}{(2+\delta)\sum_{j=1}^{n} \mathbb{E}X_{j}^{2}}\right) + C_{2}(\delta)p^{\rho}\frac{\mathbb{E}\max_{j}|X_{j}|^{\rho}}{t^{\rho}}$$

 Uwe Einmahl and Deli Li (2007); Radek Adamczak (2008) proved that for Banach space-valued centered random variables,

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq (1+\eta)\mathbb{E}\left\|\sum_{j=1}^{n} X_{j}\right\| + t\right) \leq \exp\left(-\frac{t^{2}}{(2+\delta)B_{n}^{2}}\right) + C(\eta, \delta, \rho)\frac{\sum_{j=1}^{n} \mathbb{E}\|X_{j}\|^{\rho}}{t^{\rho}}$$

where
$$B_n^2 = \sup_{\|f\|_*=1} \sum_{j=1}^n \mathbb{E} \langle f, X_j \rangle^2$$
.

 Rio's and Einmahl and Li's inequalities can be used to prove versions of the bounded Law of the Iterated Logarithm.

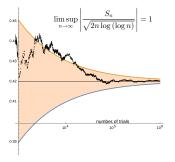


Figure: demonstrations.wolfram.com

• Haskell Rosenthal's inequality (1970): let X_1, \ldots, X_n be i.i.d.centered random variables with $p \ge 2$ finite moments. Then

$$\mathbb{E}^{1/p}\Big|\sum_{j=1}^n X_j\Big|^p \leq C(p)\left(\left(\sum_{j=1}^n \mathbb{E}X_j^2\right)^{1/2} + \left(\sum_{j=1}^n \mathbb{E}|X_j|^p\right)^{1/p}\right)$$

• Haskell Rosenthal's inequality (1970): let X_1, \ldots, X_n be i.i.d.centered random variables with $p \ge 2$ finite moments. Then

$$\mathbb{E}^{1/p}\Big|\sum_{j=1}^n X_j\Big|^p \leq C(p)\left(\left(\sum_{j=1}^n \mathbb{E}X_j^2\right)^{1/2} + \left(\sum_{j=1}^n \mathbb{E}|X_j|^p\right)^{1/p}\right)$$

• Johnson, Schechtman and Zinn (1985): best possible $C(p) \simeq \frac{p}{\log(p)}$.

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p}$$
 (*)

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p} \tag{*}$$

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

• Nagaev, Pinelis (1977): | just integrate (a variant of) Fuk-Nagaev inequality!

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p}$$
 (*)

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

- Nagaev, Pinelis (1977): | just integrate (a variant of) Fuk-Nagaev inequality!
- Up to absolute constants, (*) implies Bernstein's inequality: if $|X_i| \leq U$ a.s. for all j, then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq 2 \exp\left(-\frac{t^{2}/2}{\sum_{j} \mathbb{E} X_{j}^{2} + Ut/3}\right)$$

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p} \tag{*}$$

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

- Nagaev, Pinelis (1977): just integrate (a variant of) Fuk-Nagaev inequality!
- ullet Up to absolute constants, (*) implies Bernstein's inequality: if $|X_j| \leq U$ a.s. for all j, then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq 2 \exp\left(-\frac{t^{2}/2}{\sum_{j} \mathbb{E} X_{j}^{2} + Ut/3}\right)$$

Indeed,

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq C \cdot e\left(\sqrt{p}\left(\sum_{j=1}^{n} \mathbb{E}X_{j}^{2}\right)^{1/2} + pU\right)\right)$$

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p} \tag{*}$$

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

- Nagaev, Pinelis (1977): just integrate (a variant of) Fuk-Nagaev inequality!
- Up to absolute constants, (*) implies Bernstein's inequality: if $|X_i| \leq U$ a.s. for all j, then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right) \leq 2 \exp\left(-\frac{t^{2}/2}{\sum_{j} \mathbb{E} X_{j}^{2} + Ut/3}\right)$$

Indeed,

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \geq C \cdot e\left(\sqrt{p}\left(\sum_{j=1}^{n} \mathbb{E}X_{j}^{2}\right)^{1/2} + pU\right)\right) \leq e^{-p}\underbrace{\frac{\mathbb{E}\left|\sum_{j=1}^{n} X_{j}\right|^{p}}{C^{p}\left(\sqrt{p}\left(\sum_{j=1}^{n} \mathbb{E}X_{j}^{2}\right)^{1/2} + pU\right)^{p}}_{<1}}_{<1}$$

• Alternatively, one may ask for $C_1(p)$ and $C_2(p)$ such that

$$\mathbb{E}^{1/p} \Big| \sum_{j=1}^{n} X_j \Big|^p \le C_1(p) \left(\sum_{j=1}^{n} \mathbb{E} X_j^2 \right)^{1/2} + C_2(p) \left(\mathbb{E} \max_j |X_j|^p \right)^{1/p} \tag{*}$$

Pinelis, Utev: $C_1(p) \simeq \sqrt{p}$, $C_2(p) \simeq p$ are not improvable in general.

- Nagaev, Pinelis (1977): just integrate (a variant of) Fuk-Nagaev inequality!
- Up to absolute constants, (*) implies Bernstein's inequality: if $|X_j| \leq U$ a.s. for all j, then

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} X_{j}\right| \ge t\right) \le 2 \exp\left(-\frac{t^{2}/2}{\sum_{j} \mathbb{E} X_{j}^{2} + Ut/3}\right)$$

• In this talk, we will show that it is possible to have $C_1(p) \asymp \sqrt{p}$, $C_2(p) \asymp \frac{p}{\log(p)}$ if

$$\mathbb{E} \max_{j} |X_{j}| \lesssim (\log(p))^{-1} \left(\mathbb{E} \max_{j} |X_{j}|^{p} \right)^{1/p}.$$

• Let $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ be independent, centered, self-adjoint random matrices.

- Let $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ be independent, centered, self-adjoint random matrices.
- How large is the spectral norm $\left\|\sum_{j=1}^{n} X_{j}\right\|$?

- Let $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ be independent, centered, self-adjoint random matrices.
- How large is the spectral norm $\left\|\sum_{j=1}^{n} X_{j}\right\|$?
- Example: $Y_1, \ldots, Y_n \in \mathbb{R}^d$, $\mathbb{E}Y_j = 0$, $\mathbb{E}Y_j Y_j^T = \Sigma$, and $X_j = \frac{1}{n} \left(Y_j Y_j^T \Sigma \right)$:

$$\left\| \underbrace{\frac{1}{n} \sum_{j=1}^{n} Y_j Y_j^T - \Sigma}_{:=\widehat{\Sigma}_n} \right\| \leq ?$$

- Let $X_1, \ldots, X_n \in \mathbb{C}^{d \times d}$ be independent, centered, self-adjoint random matrices.
- How large is the spectral norm $\left\|\sum_{j=1}^{n} X_{j}\right\|$?
- Example: $Y_1, \ldots, Y_n \in \mathbb{R}^d$, $\mathbb{E}Y_j = 0$, $\mathbb{E}Y_j Y_j^T = \Sigma$, and $X_j = \frac{1}{n} \left(Y_j Y_j^T \Sigma \right)$:

$$\left\| \underbrace{\frac{1}{n} \sum_{j=1}^{n} Y_j Y_j^T}_{:=\widehat{\Sigma}_n} - \Sigma \right\| \leq ?$$

• "Matrix Bernstein's" inequality (Ahlswede and Winter; Oliveira; Tropp): If $||X_i|| \le U$ a.s., then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \leq 2d \exp\left(-\frac{t^{2}/2}{B_{n}^{2} + Ut/3}\right)$$

where $B_n^2 \ge \left\| \sum_{j=1}^n \mathbb{E} X_i^2 \right\|$ is the so-called "matrix variance."

• "Matrix Bernstein's" inequality (Ahlswede and Winter; Oliveira; Tropp): If $||X_i|| \le U$ a.s., then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \leq 2d \exp\left(-\frac{t^{2}/2}{B_{n}^{2} + Ut/3}\right)$$

where $B_n^2 \ge \left\| \sum_{j=1}^n \mathbb{E} X_j^2 \right\|$ is the so-called "matrix variance."

• "Matrix Rosenthal's" inequality: Chen, Gittens, Tropp (2011), Dirksen's Ph.D. thesis (2011), Junge and Zeng (2011). Let $p \ge 2$, then

$$\mathbb{E}^{1/p} \left\| \sum_{j=1}^n X_j \right\|^p \lesssim \sqrt{q} \mathcal{B}_n + q \mathbb{E}^{1/p} \max_j \|X_j\|^p$$

where $q = \max(p, \log(ed))$.

• "Matrix Bernstein's" inequality (Ahlswede and Winter; Oliveira; Tropp): If $\|X_i\| \le U$ a.s., then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \leq 2d \exp\left(-\frac{t^{2}/2}{B_{n}^{2} + Ut/3}\right)$$

where $B_n^2 \ge \left\| \sum_{j=1}^n \mathbb{E} X_j^2 \right\|$ is the so-called "matrix variance."

• "Matrix Rosenthal's" inequality: Chen, Gittens, Tropp (2011), Dirksen's Ph.D. thesis (2011), Junge and Zeng (2011). Let $p \ge 2$, then

$$\mathbb{E}^{1/p} \left\| \sum_{j=1}^n X_j \right\|^p \lesssim \sqrt{q} B_n + q \mathbb{E}^{1/p} \max_j \|X_j\|^p$$

where $q = \max(p, \log(ed))$.

 These results are useful tools in statistical applications: matrix completion, community detection, etc. • "Matrix Bernstein's" inequality (Ahlswede and Winter; Oliveira; Tropp): If $||X_i|| \le U$ a.s., then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \leq 2d \exp\left(-\frac{t^{2}/2}{B_{n}^{2} + Ut/3}\right)$$

where $B_n^2 \ge \left\| \sum_{i=1}^n \mathbb{E} X_i^2 \right\|$ is the so-called "matrix variance."

• "Matrix Rosenthal's" inequality: Chen, Gittens, Tropp (2011), Dirksen's Ph.D. thesis (2011), Junge and Zeng (2011). Let $p \ge 2$, then

$$\mathbb{E}^{1/p} \left\| \sum_{j=1}^{n} X_j \right\|^p \lesssim \sqrt{q} B_n + q \mathbb{E}^{1/p} \max_j \|X_j\|^p$$

where $q = \max(p, \log(ed))$.

- These results are useful tools in statistical applications: matrix completion, community detection, etc.
- Covariance estimation: if $\mathbb{E}^{1/p} \max_j \|Y_j\|^{2p} \asymp d\|\Sigma\|$, then $\|\widehat{\Sigma}_n \Sigma\| \le \varepsilon \|\Sigma\|$ as long as

$$n \gtrsim \frac{1}{\varepsilon^2} d \log(d)$$
.

Boundedness and the effective rank

• Covariance estimation: what if Σ can be well approximated by a matrix with small rank? And what if $\|Y_i\|$ is unbounded (but, say, $\mathbb{E}e^{\lambda\|Y_j\|^2} < \infty$ for some $\lambda > 0$)?

Boundedness and the effective rank

- Covariance estimation: what if Σ can be well approximated by a matrix with small rank? And what if $\|Y_i\|$ is unbounded (but, say, $\mathbb{E}e^{\lambda\|Y_j\|^2} < \infty$ for some $\lambda > 0$)?
- Effective rank:

$$r(A) = \frac{\operatorname{tr}(A)}{\|A\|}$$

Boundedness and the effective rank

- Covariance estimation: what if Σ can be well approximated by a matrix with small rank? And what if $\|Y_i\|$ is unbounded (but, say, $\mathbb{E}e^{\lambda\|Y_j\|^2} < \infty$ for some $\lambda > 0$)?
- Effective rank:

$$r(A) = \frac{\operatorname{tr}(A)}{\|A\|}$$

• Results in this direction were obtained by M. (2011), Koltchinskii (2011), Klochkov and Zhivotovskiy (2018). Assume that $\sum_{j=1}^n \mathbb{E} X_j^2 \preceq V_n$, $B_n^2 = \|V_n\|$, $M := \max_j \|X_j\|$. Then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \leq \frac{C_{1} \cdot r(V_{n}) \exp\left(-C_{2} \frac{t^{2}}{B_{n}^{2} + \|\boldsymbol{M}\|_{\psi_{1}} t}\right)$$

Main results: Fuk-Nagaev-type inequality

Theorem (J+M+S+W)

Let X_1, \ldots, X_n be centered self-adjoint random matrices such that $\mathbb{E}||X_1||^p < \infty$ and

$$\sum_{i=1}^{n} \mathbb{E} X_{j}^{2} \leq V_{n}, \quad B_{n}^{2} = \|V_{n}\|, \quad M := \max_{j} \|X_{j}\|$$

Then

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n} X_{j}\right\| \geq t\right) \lesssim r(V_{n}) \exp\left(-C_{2} \frac{t^{2}}{B_{n}^{2} + t \mathbb{E}M}\right) + \mathbb{P}(M \geq t/80) + \left(\frac{p}{\log(ep)}\right)^{2p} \left(\frac{\mathbb{E}M^{p}}{t^{p}}\right)^{2}$$

Main results: Rosenthal-type inequality

Integrating the Fuk-Nagaev inequality, we deduce the following

Corollary

Let

$$\sum_{j=1}^{n} \mathbb{E} X_{j}^{2} \leq V_{n}, \quad B_{n}^{2} = \|V_{n}\|, \quad M := \max_{j} \|X_{j}\|$$

For all $p \ge 1$,

$$\mathbb{E}^{1/p} \left\| \sum_{j=1}^{n} X_{j} \right\|^{p} \lesssim \sqrt{q} B_{n} + q \mathbb{E} M + \frac{p}{\log(ep)} \left(\mathbb{E} M^{p} \right)^{1/p} \tag{*}$$

where $q = \max(p, \log(r(V_n)))$.

Main results: Rosenthal-type inequality

Integrating the Fuk-Nagaev inequality, we deduce the following

Corollary

Let

$$\sum_{j=1}^{n} \mathbb{E} X_{j}^{2} \leq V_{n}, \quad B_{n}^{2} = \|V_{n}\|, \quad M := \max_{j} \|X_{j}\|$$

For all $p \ge 1$,

$$\mathbb{E}^{1/p} \left\| \sum_{j=1}^{n} X_{j} \right\|^{p} \lesssim \sqrt{q} B_{n} + q \mathbb{E} M + \frac{p}{\log(ep)} \left(\mathbb{E} M^{p} \right)^{1/p} \tag{*}$$

where $q = \max(p, \log(r(V_n)))$.

Compare to

$$\mathbb{E}^{1/p} \left\| \sum_{i=1}^n X_j \right\|^p \lesssim \sqrt{q} B_n + q \left(\mathbb{E} M^p \right)^{1/p},$$

$$q = \max(p, \log(ed)).$$

• If $\mathbb{E} M \ll \mathbb{E}^{1/p} M^p$ then (*) improves the scalar version of Rosenthal's inequality.

•
$$\widehat{\Sigma}_n = \frac{1}{n} \sum_{j=1}^n Y_j Y_j^T$$
, and $\left\| \widehat{\Sigma}_n - \Sigma \right\| \leq \varepsilon \| \Sigma \|$ as long as

$$n \gtrsim \frac{1}{\varepsilon^2} d \log(d)$$

Questions: (a) can $\log(d)$ be removed? (b) is $n \gtrsim \frac{1}{\epsilon^2} r(\Sigma)$ sufficient?

• $\widehat{\Sigma}_n = \frac{1}{n} \sum_{j=1}^n Y_j Y_j^T$, and $\left\| \widehat{\Sigma}_n - \Sigma \right\| \leq \varepsilon \| \Sigma \|$ as long as

$$n \gtrsim \frac{1}{\varepsilon^2} d \log(d)$$

Questions: (a) can $\log(d)$ be removed? (b) is $n \gtrsim \frac{1}{\epsilon^2} r(\Sigma)$ sufficient?

 Yes! - for Gaussian covariance operators, Koltchinskii and Lounici obtained very general, optimal bounds.

• $\widehat{\Sigma}_n = \frac{1}{n} \sum_{j=1}^n Y_j Y_j^T$, and $\left\| \widehat{\Sigma}_n - \Sigma \right\| \le \varepsilon \| \Sigma \|$ as long as

$$n \gtrsim \frac{1}{\varepsilon^2} d \log(d)$$

Questions: (a) can $\log(d)$ be removed? (b) is $n \gtrsim \frac{1}{2} r(\Sigma)$ sufficient?

- Yes! for Gaussian covariance operators, Koltchinskii and Lounici obtained very general, optimal bounds.
- For the log-concave and heavy-tailed cases, results by Bourgain; Rudelson; Vershynin, Srivastava; Adamczak, Litvak, Pajor, Tomczak-Jaegermann, Guédon; Mendelson, Paouris.

• $\widehat{\Sigma}_n = \frac{1}{n} \sum_{j=1}^n Y_j Y_j^T$, and $\left\| \widehat{\Sigma}_n - \Sigma \right\| \leq \varepsilon \| \Sigma \|$ as long as

$$n \gtrsim \frac{1}{\varepsilon^2} d \log(d)$$

Questions: (a) can $\log(d)$ be removed? (b) is $n \gtrsim \frac{1}{\varepsilon^2} r(\Sigma)$ sufficient?

- Yes! for Gaussian covariance operators, Koltchinskii and Lounici obtained very general, optimal bounds.
- For the log-concave and heavy-tailed cases, results by Bourgain; Rudelson; Vershynin, Srivastava; Adamczak, Litvak, Pajor, Tomczak-Jaegermann, Guédon; Mendelson, Paouris.
- Tikhomirov (2016): let $\Sigma = I_d$ and assume that $\sup_v \mathbb{E} |\langle Y_1, v \rangle|^p < \infty$ where p > 4. Then with probability at least 1 1/n,

$$\left\|\widehat{\Sigma}_n - \Sigma\right\| \lesssim_{\rho} \frac{\max_j \|Y_j\|^2}{n} + \sqrt{\frac{d}{n}}$$

• Tikhomirov (2016): let $\Sigma = I_d$ and assume that $\sup_v \mathbb{E} |\langle Y_1, v \rangle|^p < \infty$ where p > 4. Then with probability at least 1 - 1/n,

$$\left\|\widehat{\Sigma}_n - \Sigma\right\| \lesssim_{\rho} \frac{\max_j \|Y_j\|^2}{n} + \sqrt{\frac{d}{n}}$$

 Building on results of Abdalla and Zhivotovskiy (2023), one can show the following: assume that r(Σ) < cn and that for some p > 4,

$$\mathbb{E}^{1/\rho} \left| \langle Y, v \rangle \right|^{\rho} \leq \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^{2}$$

Then with probability at least 1 - 1/n,

$$\left\|\widehat{\Sigma}_n - \Sigma\right\| \lesssim_{\rho,\kappa} \frac{\max_j \|Y_j\|^2}{n} + \|\Sigma\|\sqrt{\frac{r(\Sigma)}{n}}$$

 Building on results of Abdalla and Zhivotovskiy (2023), one can show the following: assume that r(Σ) < cn and that for some p > 4,

$$\mathbb{E}^{1/\rho} \left| \left\langle Y, v \right\rangle \right|^{\rho} \le \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^{2}$$

Then with probability at least 1 - 1/n,

$$\left\|\widehat{\Sigma}_n - \Sigma\right\| \lesssim_{\rho,\kappa} \frac{\max_j \|Y_j\|^2}{n} + \|\Sigma\|\sqrt{\frac{r(\Sigma)}{n}}$$

• What about bounds in L_p ? Using Rosenthal's inequality, we prove the following bound:

Corollary

$$\mathbb{E}^{1/2} \left\| \widehat{\Sigma}_n - \Sigma \right\|^2 \lesssim_{\rho,\kappa} \frac{\left(\mathbb{E} \max_j \|Y_j\|^\rho \right)^{2/\rho}}{n} + \|\Sigma\| \sqrt{\frac{r(\Sigma)}{n}}$$

• Assume that $r(\Sigma) < cn$ and that for some p > 4,

$$\mathbb{E}^{1/p} \left| \left\langle Y, v \right\rangle \right|^p \leq \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^2$$

• Assume that $r(\Sigma) < cn$ and that for some p > 4,

$$\mathbb{E}^{1/p} \left| \left\langle Y, v \right\rangle \right|^p \leq \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^2$$

• Let u_j , \hat{u}_j be the eigenvectors of Σ , $\hat{\Sigma}_n$,

$$g_1 = \lambda_1 - \lambda_2$$
 and $g_j = \min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})$

• Assume that $r(\Sigma) < cn$ and that for some p > 4,

$$\mathbb{E}^{1/p} \left| \left\langle Y, v \right\rangle \right|^p \leq \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^2$$

• Let u_i , \hat{u}_i be the eigenvectors of Σ , $\hat{\Sigma}_n$,

$$g_1 = \lambda_1 - \lambda_2$$
 and $g_j = \min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})$

"Relative rank"

$$r_j(\Sigma) = \sum_{i \neq j} \frac{\lambda_i}{|\lambda_i - \lambda_j|} + \frac{\lambda_j}{g_j}$$

• Assume that $r(\Sigma) < cn$ and that for some p > 4,

$$\mathbb{E}^{1/p} \left| \langle Y, v \rangle \right|^p \le \kappa \mathbb{E}^{1/2} \left\langle Y, v \right\rangle^2$$

• Let u_i , \hat{u}_i be the eigenvectors of Σ , $\hat{\Sigma}_n$,

$$g_1 = \lambda_1 - \lambda_2$$
 and $g_j = \min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})$

"Relative rank"

$$r_j(\Sigma) = \sum_{i \neq j} \frac{\lambda_i}{|\lambda_i - \lambda_j|} + \frac{\lambda_j}{g_j}$$

Corollary

$$\mathbb{E}^{1/2} \left\| \hat{u}_j - u_j \right\|_2^2 \lesssim_{\rho,\kappa} \sqrt{\frac{\lambda_j}{g_i}} \sqrt{\frac{r_j(\Sigma)}{n} + \frac{r_j(\Sigma)}{n^{1-2/\rho}}}$$

Idea of the proof of Fuk-Nagaev inequality

• X_1, \ldots, X_n are centered self-adjoint random matrices such that $\mathbb{E}||X_1||^p < \infty$ and $M := \max_i ||X_i||$.

$$\mathbb{P}\left(\left\|\sum_{j=1}^{n}X_{j}\right\|\geq t\right)\leq ?$$

Idea of the proof of Fuk-Nagaev inequality

• X_1,\ldots,X_n are centered self-adjoint random matrices such that $\mathbb{E}\|X_1\|^p<\infty$ and $M:=\max_i\|X_i\|$.

$$\mathbb{P}\left(\left\|\sum_{j=1}^n X_j\right\| \geq t\right) \leq ?$$

• "Double truncation:" set $U \approx \mathbb{E}M$, y = ct and

$$\widetilde{X}_j = X_j I\{\|X_j\| \le U\}, \quad \Delta_j^{(1)} = X_j I\{U < \|X_j\| \le y\}, \quad \Delta_j^{(2)} = X_j I\{\|X_j\| > y\}$$

Idea of the proof of Fuk-Nagaev inequality

• X_1, \ldots, X_n are centered self-adjoint random matrices such that $\mathbb{E}||X_1||^p < \infty$ and $M := \max_i ||X_i||$.

$$\mathbb{P}\left(\left\|\sum_{j=1}^n X_j\right\| \geq t\right) \leq ?$$

• "Double truncation:" set $U \simeq \mathbb{E}M$, y = ct and

$$\widetilde{X}_j = X_j I\{\|X_j\| \le U\}, \quad \Delta_j^{(1)} = X_j I\{U < \|X_j\| \le y\}, \quad \Delta_j^{(2)} = X_j I\{\|X_j\| > y\}$$

Some work is required to prove that

$$\mathbb{P}\left(\left\|\sum_{k=1}^{n} \Delta_{j}^{(1)}\right\| > t/16\right) \lesssim \left(\frac{p}{\log(p)}\right)^{2p} \left(\frac{\mathbb{E} M^{p}}{t^{p}}\right)^{2}$$

Main tools are the Hoffmann-Jørgensen + Talagrand's comparison inequalities between sums and maxima.

Thank you for listening!