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DIFFERENTIAL PRIVACY

Ehe New Hork Times [ Give THE |

The 2020 Census Suggests That People
Live Underwater. There’s a Reason.

Technology advances forced the Census Bureau to use sweeping
measures to ensure privacy for respondents. The ensuing debate
goes to the heart of what a census is.
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‘The Census Bureau says that 14 people live in this bend in the Chicago River. It's one of thousands of bits of
iy incorrect data in the 2020 census meant to protect the privacy of census respondents. Jamie Kelter Davis for The
ru New York Times



DIFFERENTIAL PRIVACY

Apple will not

see your data

https://www.theverge.com/2015/3/10/8177683/apple-research-kit-app-ethics-medical-research
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DIFFERENTIAL PRIVACY

A privacy mechanism is a randomised algorithm taking an input dataset
X =(X1,...,Xa) € X" and producing publishable data Z. Formally, it is a
collection of conditional distributions @ = {Q(:|x) : x € X"} such that

Z|{X = x} ~ Q(:|x).

Privacy mechanism Q is called (¢, §)-(central) differentially private (Dwork et al., 2006),
withe > 0and § > 0, if
Q(A|x) < e Q(A|X") + 0,

for all measurable set A, any pair x = (x;){—;, X' = (x{)—; € X" such that
>or, 1{xi # x;} < 1. We focus on the regime € € (0, 1].
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A privacy mechanism is a randomised algorithm taking an input dataset
X =(X1,...,Xa) € X" and producing publishable data Z. Formally, it is a
collection of conditional distributions @ = {Q(:|x) : x € X"} such that

Z|{X = x} ~ Q(:|x).

Privacy mechanism Q is called (¢, §)-(central) differentially private (Dwork et al., 2006),
withe > 0and § > 0, if
Q(A|x) < e Q(A|X") + 0,
for all measurable set A, any pair x = (x;){—;, X' = (x{)—; € X" such that
>or, 1{xi # x;} < 1. We focus on the regime € € (0, 1].

At a high level, this quantifies how similar the private outcomes are in terms of total
variation distance, by changing one out of n samples.



DIFFERENTIAL PRIVACY

For the central differential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

~ 1 — 1
f=Z=-> X+ —W, with W~ Lap(1).
PN W ith W Lap()

The variance of total added noise is of order (n’¢”) ™.
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DIFFERENTIAL PRIVACY

For the central differential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

~ BN 1
0=7Z=-S "X+ —W, with W~ Lap(1).
LS LW it W Lap(1)
The variance of total added noise is of order (n’¢”) ™.

A stronger notion of differential privacy is the local differential privacy (LDP), where
data are randomised before collection, that is

P(Z c AlXi=x) < eP(Z € AAXi=Xx)+06, ic€{1,...,n},
for all measurable set A and any pair x, x’ € X. For example, when estimating a

univariate mean, we can have

n n

~ 1 1 1 . n o iid.
0=- ;Z = ; (x,- + EW’> . with {W;}, "% Lap(1).
The variance of total added noise is of order (ne’) ™"
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DIFFERENTIAL PRIVACY

Remarks

> Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

> Large € regimes.
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FEDERATED LEARNING
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https://blogs.nvidia.com/blog/what-is-federated-learning/
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FEDERATED LEARNING

Community
0 > Hospital
e ————— . il
P A - RN & i
U privateData ApY 1 ji!
Research
Federated Server 0 e
Privacy
Preservig  LocalModel
o () 0 Private Data
R Cancer
o »  Treatment Center
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https://blogs.nvidia.com/blog/what-is-federated-learning/

Challenges
> Heterogeneity: distributions, privacy requirement types, privacy budgets.
» Communications: efficiency in aggregating and communicating siloed information.
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FEDERATED DIFFERENTIAL PRIVACY

Server 1 2 Ll
Raw data {DMym j [ {0232, (DO},
Under some

privacy constraints

Privatised R1 R2
data \

Final estimator 0

Rs
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FEDERATED DIFFERENTIAL PRIVACY

Server 1 2 - S
Rawdata|  {DV}, D2y, {0}z,
Under some

privacy constraints

Privatised R1 R> Rs

data

Final estimator

» User-level DP: Rate optimality and phase transition for user-level local differential
privacy (arXiv: 2405.11923, Alexander Kent, Thomas B. Berrett and Y.)

> CDP: Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li,
Ye Tian, Yang Feng and Y.)

» A mixture of both: Private distributed learning in functional data (arxiv:2412.06582,
Gengyu Xue, Zhenhua Lin and Y.)
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FEDERATED DIFFERENTIAL PRIVACY

A simple example: univariate mean estimation measured in squared loss, with S
users/sites and n units of data per user.

Setting Minimax rates References

No privacy 1/(Sn) Very easy to show
Local item-level 1/(Sne?) Duchi et al. (2018)
Local user-level (small n) 1/(Sne?) Our result

Local user-level (large n) e Our result
Central item-level 1/(Sn) v 1/(S*n*e?)  Levy et al. (2021)

Central user-level (small n)  1/(Sn) vV 1/(S’ne®)  Levy et al. (2021)
Federated 1/(Sn) V 1/(Sn*c?)  Our result
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FEDERATED SURVIVAL ANALYSIS

» Optimal Cox regression under federated differential privacy: coefficients and
cumulative hazards (arXiv: 2508.196401)

» R package FDPCoX available at https://github. com/EKHung/FDPCoX.

Elly K. H. Hung
(Univ. of Warwick)
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https://github.com/EKHung/FDPCox

PROBLEM FORMULATION

Cox regression model

At time t € [0, 1], conditional on the covariate Z(t) € R, the conditional hazard
rate of the survival time T is

30 = 2 a0 ew(sl 2(0)

where

> Xo(+) is an unknown baseline hazard function, with its cumulative version denoted by
No(+), and

> 3y € R?is an unknown regression coefficient.
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Cox regression model

At time t € [0, 1], conditional on the covariate Z(t) € R, the conditional hazard
rate of the survival time T is

30 = 2 a0 ew(sl 2(0)

where

> Xo(+) is an unknown baseline hazard function, with its cumulative version denoted by
No(+), and

> 3y € R?is an unknown regression coefficient.

Right censoring

Let C € R, be a random variable conditionally independent of T given

{z(t): te[0,1]}.



PROBLEM FORMULATION (CONT’D)
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Data
Let T = min{T, C} be the observed time and A = 1{T < C} be the (not)

censoring indicator.

The observed data
S,ng

{(TSJ’ As,iv {Zs,i(t)v te [07 1]]’)]’s,i:]
are i.i.d. copies of the generic triplet (T, A, {Z(-), t € [0, 1]}).



PROBLEM FORMULATION (CONT’D)
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Data

Let T = min{T, C} be the observed time and A = 1{T < C} be the (not)
censoring indicator.

The observed data
{(Tois Do, {Zei(1), £ € [0, D)},

are i.i.d. copies of the generic triplet (T, A, {Z(-), t € [0, 1]}).

Tasks

Estimating the regression coefficients 3, and the cumulative hazard function A, ("),
subject to the federated differential privacy constraints.



PROBLEM FORMULATION (CONT’D)
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Federated differential privacy

In this paper, we consider a class of K-round mechanisms.

DeriniTioN [({€5, 05 }5y, K)-FDP]

ForSe Ny, lete; >0and ds > 0,5 € [5] be privacy parameters. For K € N, we
say that a privacy mechanism Q = {Q } <, satisfies ({€;, 85}y, K)-FDP, if for
any s € [S] and k € [K], the data R shared by the server s satisfies (s, d5)-CDP,

i.e.

QP (RP e AV |MED Py < ¢ QW(RW e AW |ME=D (WYY + 4,

for any measurable set Agk), ME=D = U, | Uf T RS , and any pairs DE , ( k))' that
differing by at most one entry, where Uf_, D forms a partition of the dataset at
server s, s € [S].



PROBLEM FORMULATION (CONT’D)
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PROBLEM FORMULATION (CONT’D)
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Private minimax rate
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inf inf sup Ep.o{L(0,0(P))}.
inf inf sup r.a{L(0,0(P))}



ASSUMPTIONS

Recall the Cox model that
A(t) = Ao() exp {67 Z(0)}

and the data triple (T, A, {Z(-)}). Using the counting process representation,
denote N(t) = 1{T < t,A =1} and Y(t) = 1{T > t}.
Assumptions

» Compact time horizon [0, 1].

» Boundedness conditions on the covariates and coefficients.

> Eigenvalues of the Hessian are homogeneous of order 1/d.

> Baseline hazard functions are regulated.
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ASSUMPTIONS

Eigenvalues of the Hessian

Forany t € [0,1] and 8 € RP, let
G(t,8) = Y(t)exp{B" Z()HZ(t) — ult, B)}*,

with
E[Z(1)Y(t)exp{B" Z(1)}]
E[Y(t) exp{8T Z(t)}]

u(t, B) =

Assume that

0 < (B[ [ 0t 8 a09)] ) <o (B | [ 0t ) ante)] ) <

for some constants py > p_ > 0.

hS)



ASSUMPTIONS

Baseline hazards

Assume that the hazard rate A\o(+) exists on [0, 1]. For any t € [0, 1], one of the
following two holds.

a. The cumulative hazard Ao (t) = fot Ao(s) ds < oco.

b. There exist absolute constants Cy, po > 0, such that A\o(t) < Cy and P{Y(1) = 1} = po.
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ASSUMPTIONS

Baseline hazards

Assume that the hazard rate A\o(+) exists on [0, 1]. For any t € [0, 1], one of the
following two holds.

a. The cumulative hazard Ao (t) = fot Ao(s) ds < oco.

b. There exist absolute constants Cy, po > 0, such that A\o(t) < Cy and P{Y(1) = 1} = po.

Remark. a. is used for estimating B, and b. is used for estimating Ao(+).
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Optimal estimation of the regression coefficients
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MINIMAX RATES
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THEOREM Denote by P the class of distributions satisfying the assumptions, and
denote Q the class of ({(és, ds)}se[s), K)-FDP mechanisms for all K € N. Suppose
that d; log(1/9s) < €2/d, for s € [S]. We have that

dZ
25:1 min{n;, ”Efg/d}’

for some L € [1,log?(37_, ns) maxe(s log(1/55) log?(ns)].

inf infsup E B — =1
i, inf sup Eq.p {13~ G}



MINIMAX RATES (CONT’D)

dZ
Z;; min{ns, n?e?/d}

inf_inf sup Eq.p{||8 — Bol|?} = L
dnf, inf sup a.r{l1B = Boll2}

Remarks

» The upper bound is achieved by choosing K to be a logarithmic factor and the lower
bound is achieved by setting K = 1.

> The lower bound is proved via the van Trees inequality and score attack arguments.

» In a homogeneous setting, ns = nand €; = ¢, for s € [S], we have the rate

2P
maxq —, —— ¢ .
{ Sn’ Sn%e? }
> When S = 1, we have the central DP rate

L LI
o[£, 21
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FDP Cox ALGORITHM
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1. Obtain gradients from each batch of each server.

2. Privatise the gradients by adding appropriate Gaussian noise.

3. Aggregate the gradients from all servers in each step by appropriate weights.
4. Update the estimator and truncate it.

5. Output the final estimator.
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LABEL DIFFERENTIAL PRIVACY

Question: Does having public covariates lead to an accuracy improvement in
estimating the Cox regression coefficients?
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Question: Does having public covariates lead to an accuracy improvement in
estimating the Cox regression coefficients?

DeriniTION (Label-CDP) For € > 0 and § > 0, a privacy mechanism M is an
(¢, 6)-label-CDP mechanism for survival data, if it is a conditional distribution
satisfying
]P){M({Tn Ah Zi}ie[n]) S A‘(Tn Ai7 Zi)ie[n]}
SGEP{M({EI7 A:7 Z/}iE[n]) € Al(Tll, A:a Zi)ie[n]} + 67

for all measurable set A, all possible {Z;}ic[, and all possible {(T;, Ai, T/, A}) Yiepn
such that -7 1{(T;, A)) # (T, A} < 1.



LABEL DIFFERENTIAL PRIVACY
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Question: Does having public covariates lead to an accuracy improvement in
estimating the Cox regression coefficients?

DeriniTION (Label-CDP) For € > 0 and § > 0, a privacy mechanism M is an
(¢, 6)-label-CDP mechanism for survival data, if it is a conditional distribution
satisfying
]P){M({Tn Ah Zi}ie[n]) S A‘(Tn Ai7 Zi)ie[n]}
SCEP{M({EI7 A:7 Z/}iE[n]) S Al(Tll, A:a Zi)ie[n]} + 67
for all measurable set A, all possible {Z;}ic[, and all possible {(T;, Ai, T/, A}) Yiepn
such that -7 1{(T;, A)) # (T, A} < 1.

A label-FDP definition can be made correspondingly.



LABEL DIFFERENTIAL PRIVACY

Does having public covariates lead to an accuracy improvement
in estimating the Cox regression coefficients?

THEOREM Denote by P the class of distributions satisfying all assumptions and
denote Q the class of ({(es, ds) }se(s), K)-FDP mechanisms for all K € N, Suppose
that d; log(1/9s) < €2/d, for s € [S]. We have that

dZ
Zf:1 min{"h n§e§/d}7

for some L € [1,log?(37_, ns) maxe(s log(1/55) log?(ny)].

inf inf E 2 2 =L
Q|2Q|% Egg a.r{lIB — Boll2}
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LABEL DIFFERENTIAL PRIVACY

Does having public covariates lead to an accuracy improvement
in estimating the Cox regression coefficients?

THEOREM Denote by P the class of distributions satisfying all assumptions and
denote Q the class of ({(es, ds) }se(s), K)-FDP mechanisms for all K € N, Suppose
that d; log(1/9s) < €2/d, for s € [S]. We have that

dZ
Zf:1 min{"h nfeﬁ/d}7

for some L € [1,log?(37_, ns) maxe(s log(1/55) log?(ny)].

inf inf E 2 2 =L
Q|2Q|% Egg a.r{lIB — Boll2}

Remarks
> Sensitivity.
> Beyond public covariates.
> Lower bound proofs.
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Optimal estimation of the cumulative hazard function



CUMULATIVE HAZARD FUNCTIONS

An important question in the survival analysis is to understand the survival function
of the event. In the Cox model, it can be written as

510 = e {~ [ vtz an |, te ol
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CUMULATIVE HAZARD FUNCTIONS
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An important question in the survival analysis is to understand the survival function
of the event. In the Cox model, it can be written as

510 = e {~ [ vtz an |, te ol

We have obtained an estimator of 5y. To estimate 57(-), a renowned estimator of
No(+) is the Breslow estimator, which written in counting process representation is,

Ni(s)
/\(t /Z v exp{ﬁTZ()}’ teo,1].

In the non-private case, v/n(A — Ay) converges to a zero-mean Gaussian process.




FDP-BRESLOW ALGORITHM

Binary rep. of [2"t]
determines the set of Xs ;, m's to use

Leaves are local Breslow estimators
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FDP-BRESLOW ALGORITHM

THEOREM (INFORMAL) Under regularity assumptions and with suitable inputs, we
have that

> the output of the FDP-Breslow algorithm A satisfies ({es, 5 }scs, 1)-FDP, and

> that

1

E [ sup |A(t) - /\o(t)] Sog +E{|IB - Boll}
2

tefo,1 S : 2.2
6[ ] s=1 mm{n57 nses}
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FDP-BRESLOW ALGORITHM

THEOREM (INFORMAL) Under regularity assumptions and with suitable inputs, we
have that

> the output of the FDP-Breslow algorithm A satisfies ({es, 5 }scs, 1)-FDP, and

> that

! +E{IB - 6oll}

tef0,1]

E [ sup |A(t) — /\o(t)] Slog
>

S .
o_; min{ny, n2e2}
Remarks

> Inputs: B and p.

» Non-interactive.
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MINIMAX RATES

ProposITION Let H be the set of cumulative hazard functions that satisfy the
assumptions. Fix privacy parameters {€;, &} sc[s] such that 6, < ne: for all s € [S].
Let Q be the class of ({(es, ds)}sefs), 1)-FDP estimators. It then holds that

inf sup E | sup |A() — Ao(0)]| = ! ,
NEQ NEH tefo,1] \/2571 min{ns, n§e§}
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MINIMAX RATES

ProposITION Let H be the set of cumulative hazard functions that satisfy the
assumptions. Fix privacy parameters {€;, &} sc[s] such that 6, < ne: for all s € [S].
Let Q be the class of ({(es, ds)}sefs), 1)-FDP estimators. It then holds that

inf sup E | sup |A() — Ao(0)]| = ! ,
NEQ NEH tefo,1] \/2571 min{ns, n§e§}

Remarks
» Homogeneous minimax rate

1 1
max .
{ VnS’ /mSe? }
» Lower bound proof: 1) coupling methods, and 2) challenges in the cumulative hazard
functions.
> Other loss functions, including the survival function.
> Interactive mechanisms: we can show a lower bound for general K-round interactive

mechanism ]

. S S '
ymin{S5, met, S5 ng}
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Numerical experiments
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NUMERICAL EXPERIMENTS

Rényi differential privacy in CDP

Coefficient estimation: varying no. of samples. Cumulative hazard: varying no. of samples Coeficient estimation: varying dimension
15-
04
15-
510 _03 5 - 075
5 s 540 W
3 H H N2
2 g02- 2 -3
Z05- @ = M
@ 05 -5
01 M.
N &%
0.0~ 0.0- 0.0-
20000 25000 30000 35000 40000 45000 50000 20000 25000 30000 35000 40000 45000 50000 2 3 4 5 6 7 8
mples Dimension

Figure: Simulation results for CDP Cox regression coefficients (left panel) and cumulative hazard
(middle panel) estimation, with varying sample sizes and privacy budgets; and for CDP Cox
regression coefficients estimation with varying dimensions (right panel).
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NUMERICAL EXPERIMENTS
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Figure: Simulations results from FDP-Cox (left) and FDP-Breslow (right), varying the number
of servers and the e privacy budget.
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NUMERICAL EXPERIMENTS

Censoring rate analysis

¢ -\,/\/_._‘ 075

5 -1 ~
53 210-
g -2 aK)
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z -4 @
n

\
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Censoring distribution rate

- 075
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-2
-3
-4
-5

6

UI1 UIB Uvﬁ Uv7 Uvg 1'1 1‘3
Censoring distribution rate

Figure: Effect of censoring on By (left) and /g estimation (right), by varying the censoring

distribution as Exp(c), where o € {0.1,0.3,...,1.3}.

a 0.1 0.3 0.5 0.7 0.9 1.1 13
P(A=0]T<1)|009% 0229 0330 0410 0471 0.520 0.561
P(Y(1) =1) 0.33 0273 0223 0.183 0.150 0.123  0.100

Table: Monte Carlo estimates (from 10° samples) of P(A =0 | T < 1) and P(Y(1) = 1) under

different rates for the censoring distribution Exp(c).
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DiscussioNs

» Fully-interactive lower bounds.

» Transfer learning.

> Recurrent events and user-level differential privacy.

> ..
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