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Differential privacy

A privacy mechanism is a randomised algorithm taking an input dataset

X = (X1, . . . , Xn) ∈ X n
and producing publishable data Z . Formally, it is a

collection of conditional distributionsQ = {Q(·|x) : x ∈ X n} such that

Z |{X = x} ∼ Q(·|x).

Privacy mechanism Q is called (ε, δ)-(central) di�erentially private (Dwork et al., 2006),

with ε > 0 and δ ≥ 0, if

Q(A|x) ≤ eεQ(A|x ′) + δ,

for all measurable set A, any pair x = (xi)ni=1
, x ′ = (x ′i )

n
i=1
∈ X n

such that∑n
i=1

1{xi 6= x ′i } ≤ 1. We focus on the regime ε ∈ (0, 1].

At a high level, this quantifies how similar the private outcomes are in terms of total

variation distance, by changing one out of n samples.

Yi Yu



Differential privacy

A privacy mechanism is a randomised algorithm taking an input dataset

X = (X1, . . . , Xn) ∈ X n
and producing publishable data Z . Formally, it is a

collection of conditional distributionsQ = {Q(·|x) : x ∈ X n} such that

Z |{X = x} ∼ Q(·|x).

Privacy mechanism Q is called (ε, δ)-(central) di�erentially private (Dwork et al., 2006),

with ε > 0 and δ ≥ 0, if

Q(A|x) ≤ eεQ(A|x ′) + δ,

for all measurable set A, any pair x = (xi)ni=1
, x ′ = (x ′i )

n
i=1
∈ X n

such that∑n
i=1

1{xi 6= x ′i } ≤ 1. We focus on the regime ε ∈ (0, 1].

At a high level, this quantifies how similar the private outcomes are in terms of total

variation distance, by changing one out of n samples.

Yi Yu



Differential privacy

For the central di�erential privacy (CDP), where there is a trusted central data

curator having access to all the raw data. For example, when estimating a univariate

mean, we can have

θ̂ = Z =
1

n

n∑
i=1

Xi +
1

nε
W , with W ∼ Lap(1).

The variance of total added noise is of order (n2ε2)−1

.

A stronger notion of di�erential privacy is the local di�erential privacy (LDP), where

data are randomised before collection, that is

P(Zi ∈ A|Xi = x) ≤ eεP(Zi ∈ A|Xi = x ′) + δ, i ∈ {1, . . . , n},

for all measurable set A and any pair x, x ′ ∈ X . For example, when estimating a

univariate mean, we can have

θ̂ =
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

(
Xi +

1

ε
Wi

)
, with {Wi}ni=1

i.i.d.∼ Lap(1).

The variance of total added noise is of order (nε2)−1

.
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Differential privacy

Remarks

I Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

I Large ε regimes.
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Federated learning

h�ps://blogs.nvidia.com/blog/what-is-federated-learning/

Challenges

I Heterogeneity: distributions, privacy requirement types, privacy budgets.

I Communications: e�iciency in aggregating and communicating siloed information.
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Federated differential privacy

I User-level DP: Rate optimality and phase transition for user-level local di�erential

privacy (arXiv: 2405.11923, Alexander Kent, Thomas B. Berre� and Y.)

I CDP: Federated transfer learning with di�erential privacy (arXiv: 2403.11343, Mengchu Li,

Ye Tian, Yang Feng and Y.)

I A mixture of both: Private distributed learning in functional data (arXiv:2412.06582,

Gengyu Xue, Zhenhua Lin and Y.)
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Federated differential privacy

A simple example: univariate mean estimation measured in squared loss, with S
users/sites and n units of data per user.

Se�ing Minimax rates References

No privacy 1/(Sn) Very easy to show

Local item-level 1/(Snε2) Duchi et al. (2018)

Local user-level (small n) 1/(Snε2) Our result

Local user-level (large n) e−Sε2

Our result

Central item-level 1/(Sn) ∨ 1/(S2n2ε2) Levy et al. (2021)

Central user-level (small n) 1/(Sn) ∨ 1/(S2nε2) Levy et al. (2021)

Federated 1/(Sn) ∨ 1/(Sn2ε2) Our result
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Federated survival analysis

I Optimal Cox regression under federated di�erential privacy: coe�icients and

cumulative hazards (arXiv: 2508.196401)

I R package FDPCox available at https://github.com/EKHung/FDPCox.

Elly K. H. Hung

(Univ. of Warwick)
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Problem formulation

Cox regression model

At time t ∈ [0, 1], conditional on the covariate Z(t) ∈ Rd
, the conditional hazard

rate of the survival time T̃ is

λ(t) =
fT̃ (t)
ST̃ (t)

= λ0(t) exp{β>
0
Z(t)},

where

I λ0(·) is an unknown baseline hazard function, with its cumulative version denoted by

Λ0(·), and

I β0 ∈ Rd
is an unknown regression coe�icient.

Right censoring

Let C ∈ R+ be a random variable conditionally independent of T̃ given

{Z(t) : t ∈ [0, 1]}.
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Problem formulation (cont’d)

Data

Let T = min{T̃ , C} be the observed time and ∆ = 1{T̃ ≤ C} be the (not)

censoring indicator.

The observed data

{(Ts,i,∆s,i, {Zs,i(t), t ∈ [0, 1]})}S,nss,i=1

are i.i.d. copies of the generic triplet (T ,∆, {Z(·), t ∈ [0, 1]}).

Tasks

Estimating the regression coe�icients β0 and the cumulative hazard function Λ0(·),

subject to the federated di�erential privacy constraints.
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Problem formulation (cont’d)

Federated di�erential privacy

In this paper, we consider a class of K -round mechanisms.

Definition [({εs, δs}Ss=1
, K )-FDP]

For S ∈ N+, let εs > 0 and δs ≥ 0, s ∈ [S], be privacy parameters. For K ∈ N+, we

say that a privacy mechanism Q = {Q(k)
s }S,Ks,k=1

satisfies ({εs, δs}Ss=1
,K)-FDP, if for

any s ∈ [S] and k ∈ [K ], the data R(k)
s shared by the server s satisfies (εs, δs)-CDP,

i.e.

Q(k)
s (R(k)

s ∈ A(k)
s |M(k−1),D(k)

s ) ≤ eεsQ(k)
s (R(k)

s ∈ A(k)
s |M(k−1), (D(k)

s )′) + δs,

for any measurable set A(k)
s , M(k−1) = ∪k−1

l=1
∪S

s=1
R(l)
s , and any pairs D(k)

s , (D(k)
s )′ that

di�ering by at most one entry, where ∪K
k=1

D(k)
s forms a partition of the dataset at

server s, s ∈ [S].
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Problem formulation (cont’d)
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Problem formulation (cont’d)

Private minimax rate

inf
Q∈Q

inf
θ̂

sup
P∈P

EP,Q{L(θ̂, θ(P))}.
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Assumptions

Recall the Cox model that

λ(t) = λ0(t) exp{β>
0
Z(t)}

and the data triple (T ,∆, {Z(·)}). Using the counting process representation,

denote N(t) = 1{T < t,∆ = 1} and Y(t) = 1{T ≥ t}.

Assumptions

I Compact time horizon [0, 1].

I Boundedness conditions on the covariates and coe�icients.

I Eigenvalues of the Hessian are homogeneous of order 1/d .

I Baseline hazard functions are regulated.
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Assumptions

Eigenvalues of the Hessian

For any t ∈ [0, 1] and β ∈ Rp
, let

G(t, β) = Y(t) exp{β>Z(t)}{Z(t)− µ(t, β)}⊗2,

with

µ(t, β) =
E[Z(t)Y(t) exp{β>Z(t)}]
E[Y(t) exp{β>Z(t)}]

Assume that

ρ−
d
≤ λmin

(
E
[∫

1

0

G(s, β0) dΛ0(s)
])
≤ λmax

(
E
[∫

1

0

G(s, β0) dΛ0(s)
])
≤ ρ+

d
,

for some constants ρ+ ≥ ρ− > 0.
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Assumptions

Baseline hazards

Assume that the hazard rate λ0(·) exists on [0, 1]. For any t ∈ [0, 1], one of the

following two holds.

a. The cumulative hazard Λ0(t) =
∫ t

0
λ0(s) ds <∞.

b. There exist absolute constants Cλ, p0 > 0, such that λ0(t) < Cλ and P{Y(1) = 1} = p0.

Remark. a. is used for estimating β0 and b. is used for estimating Λ0(·).
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Optimal estimation of the regression coe�icients



Minimax rates

Theorem Denote by P the class of distributions satisfying the assumptions, and

denoteQ the class of ({(εs, δs)}s∈[S],K)-FDP mechanisms for all K ∈ N+. Suppose

that δs log(1/δs) . ε2

s/d , for s ∈ [S]. We have that

inf
Q∈Q

inf
β̂

sup
P∈P

EQ,P{‖β̂ − β0‖2

2
} � L

d2∑S
s=1

min{ns, n2

sε2

s/d}
,

for some L ∈ [1, log2(
∑S

s=1
ns) maxs∈[S] log(1/δs) log2(ns)].
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Minimax rates (cont’d)

inf
Q∈Q

inf
β̂

sup
P∈P

EQ,P{‖β̂ − β0‖2

2
} � L

d2∑S
s=1

min{ns, n2

sε2

s/d}

Remarks

I The upper bound is achieved by choosing K to be a logarithmic factor and the lower

bound is achieved by se�ing K = 1.

I The lower bound is proved via the van Trees inequality and score a�ack arguments.

I In a homogeneous se�ing, ns = n and εs = ε, for s ∈ [S], we have the rate

max

{
d2

Sn
,

d3

Sn2ε2

}
.

I When S = 1, we have the central DP rate

max

{
d2

n
,

d3

n2ε2

}
.
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FDP Cox algorithm

1. Obtain gradients from each batch of each server.

2. Privatise the gradients by adding appropriate Gaussian noise.

3. Aggregate the gradients from all servers in each step by appropriate weights.

4. Update the estimator and truncate it.

5. Output the final estimator.
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Label differential privacy

�estion: Does having public covariates lead to an accuracy improvement in

estimating the Cox regression coe�icients?

Definition (Label-CDP) For ε > 0 and δ ≥ 0, a privacy mechanism M is an

(ε, δ)-label-CDP mechanism for survival data, if it is a conditional distribution

satisfying

P{M({Ti,∆i,Zi}i∈[n]) ∈ A|(Ti,∆i,Zi)i∈[n]}
≤eεP{M({T ′i ,∆′i ,Zi}i∈[n]) ∈ A|(T ′i ,∆′i ,Zi)i∈[n]}+ δ,

for all measurable set A, all possible {Zi}i∈[n] and all possible {(Ti,∆i, T ′i ,∆
′
i )}i∈[n]

such that

∑n
i=1

1{(Ti,∆i) 6= (T ′i ,∆
′
i )} ≤ 1.

A label-FDP definition can be made correspondingly.
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Label differential privacy

Does having public covariates lead to an accuracy improvement
in estimating the Cox regression coe�icients?

Theorem Denote by P the class of distributions satisfying all assumptions and

denoteQ the class of ({(εs, δs)}s∈[S],K)-FDP mechanisms for all K ∈ N+. Suppose
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s/d , for s ∈ [S]. We have that
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Remarks

I Sensitivity.

I Beyond public covariates.

I Lower bound proofs.
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Optimal estimation of the cumulative hazard function



Cumulative hazard functions

An important question in the survival analysis is to understand the survival function

of the event. In the Cox model, it can be wri�en as

ST̃ (t) = exp

{
−
∫ t

0

exp{β>
0
Z(s)} dΛ0(s)

}
, t ∈ [0, 1].

We have obtained an estimator of β0. To estimate ST̃ (·), a renowned estimator of

Λ0(·) is the Breslow estimator, which wri�en in counting process representation is,

Λ̂(t) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1

Yj(s) exp{β̂>Zj(s)}
, t ∈ [0, 1].

In the non-private case,

√
n(Λ̂− Λ0) converges to a zero-mean Gaussian process.
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FDP-Breslow algorithm
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FDP-Breslow algorithm

Theorem (informal) Under regularity assumptions and with suitable inputs, we

have that

I the output of the FDP-Breslow algorithm Λ̂ satisfies ({εs, δs}s∈S , 1)-FDP, and

I that

E

[
sup

t∈[0,1]
|Λ̂(t)− Λ0(t)|

]
.log

1√∑S
s=1

min{ns, n2

s ε
2

s}
+ E{‖β̂ − β0‖}

Remarks

I Inputs: β̂ and p̂.

I Non-interactive.
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Minimax rates

Proposition LetH be the set of cumulative hazard functions that satisfy the

assumptions. Fix privacy parameters {εs, δs}s∈[S] such that δs ≤ nsε2

s for all s ∈ [S].
LetQ be the class of ({(εs, δs)}s∈[S], 1)-FDP estimators. It then holds that

inf
Λ̂∈Q

sup
Λ0∈H

E

[
sup
t∈[0,1]

|Λ̂(t)− Λ0(t)|

]
&

1√∑S
s=1

min{ns, n2

sε2

s}
.

Remarks

I Homogeneous minimax rate

max

{
1

√
nS
,

1

√
n2Sε2

}
.

I Lower bound proof: 1) coupling methods, and 2) challenges in the cumulative hazard

functions.

I Other loss functions, including the survival function.

I Interactive mechanisms: we can show a lower bound for general K -round interactive

mechanism

1√
min{

∑S
s=1

n2

s ε
2

s ,
∑S

s=1
ns}

.
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Numerical experiments

Rényi di�erential privacy in CDP

Figure: Simulation results for CDP Cox regression coe�icients (le� panel) and cumulative hazard

(middle panel) estimation, with varying sample sizes and privacy budgets; and for CDP Cox

regression coe�icients estimation with varying dimensions (right panel).
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Numerical experiments

Figure: Simulations results from FDP-Cox (le�) and FDP-Breslow (right), varying the number

of servers and the ε privacy budget.
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Numerical experiments

Censoring rate analysis

Figure: E�ect of censoring on β0 (le�) and Λ0 estimation (right), by varying the censoring

distribution as Exp(α), where α ∈ {0.1, 0.3, . . . , 1.3}.

α 0.1 0.3 0.5 0.7 0.9 1.1 1.3

P(∆ = 0 | T < 1) 0.090 0.229 0.330 0.410 0.471 0.520 0.561

P(Y(1) = 1) 0.33 0.273 0.223 0.183 0.150 0.123 0.100

Table: Monte Carlo estimates (from 10
6

samples) of P(∆ = 0 | T < 1) and P(Y(1) = 1) under

di�erent rates for the censoring distribution Exp(α).
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Discussions

I Fully-interactive lower bounds.

I Transfer learning.

I Recurrent events and user-level di�erential privacy.

I …
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