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Introduction

> Feature-label pair (X, Y) € R x {0,1} related via
do(X) =P(Y = 1|X).
> &g not necessarily continuous but monotonically increasing.

“The larger X, the more probable is label 1”

Statistical problem

Based on (X1, Y1), .., (Xn, Ya) e (X,Y), infer on ®g.

> |f — except for monotonicity — no additional information on ®g

is available, nonparametric MLE (NPMLE) is the natural
choice.
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The NPMLE &,

b, € Argmax  _ log(pe(X;, 7)),
¢€]:T i=1

where po(x,y) = ®(x)Y(1 — (x))7Y for d € F, ie.
b, e Argmaxz Yilog ®(X;) + (1 — Y;)log(1l — ®(X)).
(DG]:T i=1

» Existence 1/, Uniqueness at the sample points (in case of
pairwise difference) /
(cf. [Groeneboom and Wellner (1992)]).

» By [Grenander (1956)], (&D,,(X(l)), e &J,,(X(,,))) is given via
left-hand derivative of the greatest convex minorant of

{(i,%»@) :iE{l,...,n}}.
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Graphical derivation of ®,
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Graphical derivation of ®,

Y(1)s---» Y(10) ordered based on the order statistic X(y), ..., X(10)
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Graphical derivation of ®,

Y(1)s---» Y(10) ordered based on the order statistic X(y), ..., X(10)

polygonal chain
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Graphical derivation of d,

Y(1)s---» Y(10) ordered based on the order statistic X(y), ..., X(10)

‘ polygonal chain ‘

‘ greatest convex minorant ‘
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Graphical derivation of d,

Y(1)s---» Y(10) ordered based on the order statistic X(y), ..., X(10)

I ‘ polygonal chain ‘
i ‘ greatest convex minorant ‘
37 . 1
‘ left-hand derivative ‘
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Graphical derivation of d,
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Graphical derivation of d,
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State of the art

| 4

>

>

Pointwise convergence rate and limiting distribution [Grenander
(1957), Rao (1969), Wright (1981), Groeneboom (1985),
Groeneboom and Jongbloed (2014), ...]
> For locally flat functions [Carolan and Dykstra (1999)]
» In the misspecified case [Patilea (2001), Jankowski (2014)]
» Unified approach [Westling and Carone (2020)]
» Generalization to n-dependent monotonically increasing
functions with possibly locally changing shape [Mallick, Sarkar
and Kuchibhotla (2023)]
LP-error (rate of convergence and limiting distribution)
[Groeneboom, Hooghiemstra and Lopuhad (1999), Kulikov and
Lopuhad (2005), Durot (2002, 2007, 2008), ...]
Minimax-optimality [Cator (2011), Chatterjee, Guntuboyina and
Sen (2015), ..
Berry-Esseen bounds for Chernoff-type limits [Han and Kato
(2022)]
Bootstrap [Sen, Banerjee and Woodroofe (2010), Cattaneo,
Jansson and Nagasawa (2024)]
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State of the art — The pointwise limiting distribution

Results concerning the pointwise limiting distributions depend
heavily on whether ®¢ is (locally) strictly increasing or flat:

®g locally strictly increasing ®g locally flat around x:
dp(x) # 0: > n'/2-consistency
» n'/3-consistency » Left-derivative of GCM
» Chernoff limit of Brownian motion at

Fx(x) as limit
CDE)’B)(X) first derivative # 0

» nP/(2B+1)_consistency

» Chernoff-type limit

Parametric regime

Nonparametric regime
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Weak feature-impact

What happens if the impact of the features on the labels is weak?

Motivation: A weak feature-label relationship occurs frequently in
practical applications.

For example, privacy preserving requirements may diminish the
isolated effect of the features on the labels considerably.

» The extremal case of no impact corresponds to g being
constant.

> A very steep increase of ®g from 0 to 1 or even a jump
function is what one might consider as fully related.
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Weak feature-impact

What happens if the impact of the features on the labels is weak?

Motivation: A weak feature-label relationship occurs frequently in
practical applications.

For example, privacy preserving requirements may diminish the
isolated effect of the features on the labels considerably.

» The extremal case of no impact corresponds to g being
constant.

> A very steep increase of ®g from 0 to 1 or even a jump
function is what one might consider as fully related.

Here, weakness is colloquially understood as “close to flatness”
of the feature-label relationship x — P(Y = 1|X = x).
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Weak feature-impact

» Simulations indicate that the flatter the slope, the later the
established limiting distributions kick in.

= Large-sample-size asymptotic does not provide a suitable
description of the finite sample situation.

Question: How can this small-sample effect be explained on a
rigorous mathematical basis?

= Weakness in the sense of “almost flatness” of a feature-label
relationship has to be put into relation with the sample size to
make its presence visible.

Slightly rephrased question: How does the transition from the

nonparametric to the parametric regime look like in terms of
distributional approximation?
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The weak-feature-impact scenario

Let (X1, Y{), ..., (Xn, Y") ™ (X, Y") € R x {0,1}, related via

P(Y" = 1]|X) = ®o(6,X) =: Ds(X)

for some monotonically increasing function ®g and level of feature
impact 6, N\, 0.

» Each &, inherits qualitative properties of ®g, such as (strict)
monotonicity or (k-fold) differentiability.

» &, changes its steepness but not its shape.
» In case @y is continuously differentiable,
' (x) = 6,P5(6nx) = b, (¢6(0) + 0(1)).
» If &) >0, (0n)nen characterizes the speed in which the derivative of
x +— P(Y" = 1|X = x) approaches zero, uniformly on compacts.

> Note that a weak feature-label relation is a global property and
hence cannot be modeled locally solely.

universitatfreiburg 9/36



Pointwise theory
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Minimax lower bound over restricted classes

» Crucial aspect: Level of feature impact controls the gradient
of the feature-label relation uniformly on compacts, both from
above and from below.

Fs :={® € Fy | 'steepness’ of ® between §/2 and &}
:{cb € Fr | @)L <6 and infu(®)/v > 5/2}, 5 € [0,1].
S

Lipschitz modulus
seminorm of continuity

> &g continuously differentiable and ®3(0) € (1/2,1)

4
&, = ®©g(dpe) € Fs, for n sufficiently large.
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Minimax lower bound over restricted classes

Theorem (Pointwise lower bound)

For any xp contained in the interior of X, there exists a positive
constant C > 0, such that

liminf inf inf sup ng"((ﬁA (§)1/3)}T3(x0)—¢(x0)} > C> >0,

n—00 §el0,7%] T2 (x0) deFs

where the infinum is running over all estimators

T,f(xo) = TS (xo, (x1,¥1),- -, (X,,,y,,)).
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Minimax lower bound over restricted classes

Theorem (Pointwise lower bound)

For any xo contained in the interior of X, there exists a positive
constant C > 0, such that

liminf inf inf sup Pf’"((\/ﬁ/\ <§>1/3)}Tf(xo)—¢(xo)} > C> >

n—00 §el0,7%] T2 (x0) deFs

where the infinum is running over all estimators

T,f(xo) = TS (xo, (x1,¥1),- -, (x,,,y,,)).

» The lower bound exhibits an elbow at § ~ ﬁ

» Result remains true for continuously differentiable functions
by smoothing out kinks in the hypotheses.
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Asymptotics of the NPMLE

Questions:

» Does the NPMLE in the weak-feature-impact scenario attains
the minimax lower bound on the convergence rate?

» If it attains the lower bound, how is the limiting distribution
affected by the elbow in the convergence rate?

» Is there a phase transition in the limiting distribution?
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Convergence rates & limiting distributions

Theorem

For 5 € N, let xg be an interior point of X and assume ®y to be B-times
continuously differentiable in a neighborhood of zero with the Sth
derivative being the first non-vanishing derivative in zero.

. . 2ﬁ
(i) (Slow regime) If ndz° — oo, ChernofF-type fimit

( n )/3/(2B+1) o
dn

(Pn(x0) — Palx0)) —z £5°(0) as n — oo.
(ii) (Fast regime) If n6%% — 0, does not djpe"d on B
V(®n(x0) — ®a(x0)) —r2 g56(F(x0)) as n — oo,

(iii) (Boundary case) Let the inverse Fy'' be Hélder continuous to the
exponent o > 1/2. If n62% — ¢ € (0,0),

ﬁ(&n(xo) — Pu(x0)) —2 as n — oo.
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Convergence rate

Does the NPMLE in the weak-feature-impact scenario
attains the minimax lower bound on the convergence rate?

> If ®g is differentiable at 0 with ${(0) > 0,

n ~

(van (5n>1/3> [ $u(x0) — Pul0) | = Op(1),

i.e. the NPMLE attains the lower bound adaptively in the
weak-feature-impact scenario.
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Limiting distribution — Phase transition

How is the limiting distribution affected by the elbow in the
convergence rate?
Is there a phase transition in the limiting distribution?

» The distributional behavior of Cf>,, changes at the critical level

Op ~ 7 of feature impact:
n
» Slow regime 6,y/n — o Chernoff limit
(but faster rate of convergence)
> New limit
» Fast regime §,4/n — 0 Limit for locally flat functions

universitatfreiburg
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Comparison to literature

Comparison to [Mallick, Sarkar and Kuchibhotla (2023)]:

P> We describe a global property, they describe a local property
(focused on pointwise results).

> We characterize a new “intermediate” limiting distribution
which cannot be learned from their results.

» They only consider the slow regime, but the class of arising
limiting distributions is richer than here, as they allow for
changing the qualitative properties of the elements of the
sequence (Pp)pen.

= Their results and our results are non-nested

universitatfreiburg
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Sketch of proof

Central ingredient: The switch relation

Based on the characterization of the NPMLE as the left-hand
derivative of the greatest convex minorant, we obtain the switch
relation, which implies that the process

U,:[0,1] — R,
Un(a) == argmin™ 1 Zn: Y x<x} — a1 Zn: Tyx,<x)
x€R ng T nig

behaves like a generalized inverse to ®:

Lemma (Groeneboom (1985))
For every xg € X and every a € R, we have almost surely

~

Du(x0) >a <= Uy(a)< F;l(Fn(xo)).
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Sketch of proof

» For arbitrary v € R, start from

( (CD( 0) — ¢n(xo))§v)
= P(®n(x0) < P(x0) + )

In

and apply the switch relation

= P<argmin+ {1 D (Y = Pa(x0)) Tix<s}

se[-7, 1) LN

- Z]l{X<s}} > Fy (Fn(XO))>'

universitatfreiburg
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Sketch of proof

» Multiplication by a positive constant or adding a constant
inside the argmin does not change the location of the argmin.

= allows to generate suitable norming sequences
(Note that the labels are n-dependent).

» Suitably transform the argument s.

v

Prove weak convergence of the process inside the argmin.

P> Apply the argmax-continuous-mapping theorem, provided the
real number on the right-hand side is a continuity point of the
limit (cf. [Cattaneo, Jansson, Nagasawa (2024)]).

» Switch back (utilizing a general switch relation for the
continuous limit) to get the v back to the right-hand side.

O
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Theory of the Ll-error
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['-error under weak feature impact

Recall: A weak feature-label relation is a global property.

= Reasonable to study the statistical behavior of the L!-error

T A
/_ B,(t) — b(t)]dt

T

in the weak-feature-impact scenario.
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['-error — State of the art
Rate of consistency

o If @ is strictly isotonic, then o If ®q is constant, then
T T
/ |¢n(t)_¢0(t)|dt = O]P(nfl/3), / ‘¢n(t)—¢0(t)|dt — Op(n_l/Q),

— Local adaptation for the global estimation problem in terms of
oracle inequalities [Chatterjee et al. (2015) and Bellec (2018)].
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['-error — State of the art
Rate of consistency

o If @ is strictly isotonic, then o If ®q is constant, then
T T
/ |¢n(t)_¢0(t)|dt = O]P(nfl/3), / ‘¢n(t)—¢0(t)|dt — Op(n_l/Q),

— Local adaptation for the global estimation problem in terms of
oracle inequalities [Chatterjee et al. (2015) and Bellec (2018)].

Limiting distribution

If ®g is strictly isotonic, then

-
nt/® (n1/3/ |,(t) — do(t)|dt — u) —c N~ N(0,0?%)
-7

provided @y possesses a Holder continuous derivative and X a continuous
strictly positive Lebesgue density on [T, T].
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['-error — State of the art
Rate of consistency

o If @ is strictly isotonic, then o If ®q is constant, then
T T
/ |¢n(t)_¢0(t)|dt = O]P(nfl/3), / ‘¢n(t)—¢0(t)|dt — Op(n_l/Q),

— Local adaptation for the global estimation problem in terms of
oracle inequalities [Chatterjee et al. (2015) and Bellec (2018)].
Limiting distribution

If ®g is strictly isotonic, then

-
nt/® (n1/3/ |,(t) — do(t)|dt — u) —c N~ N(0,0?%)
-7

provided @y possesses a Holder continuous derivative and X a continuous
strictly positive Lebesgue density on [T, T].
No limiting distribution for the flat case
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Minimax lower bound over restricted classes

Recall the restricted classes

Fs ::{CD € Fy | 'steepness’ of ® between 6/2 and 5}
:{cb € Fr | @) <6 and infwl(®)/v > 5/2}, 5 €0,1].
T 14

Lipschitz modulus
seminorm of continuity

Theorem (L!-lower bound)

liminf inf inf sup <\FA( ) >E®”{/Z|Tff(t)—¢(t)|dt] >0,

n—00 50,41 TP deFs

where the infinum is running over all estimators

Tg = TI?('? (X17y1)7‘ ) (X”’yn))'
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Minimax lower bound over restricted classes

Hypotheses construction in the slow regime

The proof is based on Assouad’s hypercube technique.

3/4 1

Xk Xk + hn Xk41 1/4 % : : : :

©n,k and 1, i are the base functions to construct the hypotheses. Note
that the pointwise distance between these two functions at x, + h, is of
order (n/8)~Y/3, with h, ~(n§?)=1/3.
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Adaptivity in the weak-feature-impact scenario

Proposition
Suppose that ®q is continuously differentiable with ®(0) > 0.
Then

(Van (5””)1/3)11«:[/; 164(1) — du(1)]dt| = O(1)

in the weak-feature-impact scenario.
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Sketch of proof

On basis of Fubini's theorem and partial integration, the idea is
P to rewrite

E/T |®4(t) — @a(t)|dt

:/_Z/OI]P(&),,(t) — () > x)dx dt + /_TT/OIP(CDH(t) — &,(t) > x)dxdt,

» to employ the switch relation in the probabilities inside the
integrals to move over to the inverse process,

» and to derive by means of the slicing device and the

Dvoretzky-Kiefer-Wolfowitz inequality a tail bound for the
latter.

Here, the level of feature impact ¢, i.e. the exact dependence on
the derivative ¢/, starts to matter.
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Sketch of proof

» Whereas NPMLE and inverse process both scale at the rate
n/3 in the classical asymptotics, their convergence rates do
not coincide in the weak-feature-impact scenario any longer:

The inverse process scales pointwise at the rate

> |t is insightful to contrast its rate with the convergence rate
(”/5n)1/3

of the NPMLE in the slow regime.
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Sketch of proof

» In the parametric regime (nd2 = O(1)), arguing by means of
the inverse process is subtle as it is not everywhere convergent
any longer.

» However, the interval of non-convergence turns out to have a
length of order d, only. Combining this with sufficiently fast
convergence outside this interval bounds the expected L!-error
in the fast regime.

O
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Limiting distribution theory

> Let ®q be differentiable in a neighborhood of zero with
d5(0) > 0.

» Let px be continuously differentiable on [T, T] (one-sided
at — T, T) and assume that ®; is Holder-continuous in a
neighborhood of zero.

Theorem (Limiting distribution of the L!-error)

(i) (Slow regime) If n§> — oo, then

(naﬁ)l/ﬁ( (;)1/3/T Bo(r) - ¢,,(t)dt—uT,,) e N~ N(0,02)

n -T

o(1)

stabilized L!-error

(nd2)!/3 = convergence rate of the inverse process
(collapes at the phase transition!)
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Limiting distribution theory

> Let &g be continuous in a neighborhood of zero.

Theorem (Limiting distribution of the L'-error — continued)

(i) (Fast regime) If n62 —s 0,

f/ ®p(x)|dPx(x) — max__ A(s),

s€[=T,T]

where (A(s))se[—T,7] is @ continuous, centered Gaussian
process with A(—T) = —A(T) and

Cov(A(s), A(t)) = ®o(0)(1 — ®(0))(1 — 2|Fx(s) — Fx(1)])

fors,t € [T, T].
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Sketch of proof — Slow regime

> Rewrite

T . T R
[|¢n(t)—¢n(t)|dt:/ (®n(t) — ®a(2)) , dt

T -7

» Use Cavalieri's principle to each of the summands on the RHS

T pon(T)—s(t)
[T/O ﬂ{én(t)>¢n(t)+u}d“dt + ...

» Employ the switch relation and prove the approximation

ou(T) .
/ (@,1(a) = Fot o Un(a) L5107, <oy 1oy @2 + 02(n™Y%) +
q>n(77—) T

Inverse process
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Sketch of proof — Slow regime

>

>

Bring a first strong Gaussian approximation (KMT
construction) into play — F, is the empirical distribution
function!

Incorporate the approximating Brownian bridges into the
inverse process.

Bring some further strong Gaussian approximation into play,
namely standard Brownian motions W, given Xi,..., X,,
conditionally independent of the Brownian bridges of the
KMT approximation, that approximate an arising partial sum
process (given Xi, ..., Xy,) [Sakhanenko (1985)].

Technical arguments concerning the n-dependence of the
arising integrals and the integrand.

Employ the Bernstein blocking method for proving
convergence in distribution, conditional on Xi,..., Xj, in
probability.

Conclude the unconditional convergence in distribution. Ol
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Sketch of proof — Fast regime

» In the parametric regime (nd2 = O(1)), the inverse process is
not convergent any longer.

= Developing new strategy, not based on the switch relation.

» First, we utilize uniform consistency on compacts to prove
T ~
Vir [ [Balo)- @) P
-7
T ~
= ﬁ/ |®Dp(x) — Pp(x)|dPa(x) + op(1).
-T

» Next, we show that we may replace ®, by the constant ®¢(0)
in the L!-distance within an error of negligible order.
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Sketch of proof — Fast regime

» Now, as the NPMLE is an increasing function
T ~
| 184~ 20(0)/dP(
T ~
= sup | {/ (CD,,(X) — ¢0(0))dP,,(x)
S

se[-T,T

_ / ) (&n(x)cbo(o))dPn(x)}

-T

- s { [ (80— 90(0) (1 ~ 28 ) P(x) |

se[~T,T] T

» Exploiting the characterization of the NPMLE as local average
between two jumping points allows to approximate the
expression by a supremum over a centered partial sum process.

O
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Conclusion
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Summary — Rates of convergence

> New minimax lower bounds over restricted classes of the type

Fs = {f € F; | 'steepness’ of f between ¢/2 and 5}

G (o)"

, separating parametric and nonparametric

pointwise and in L!:

1

» Elbow at § ~ NG
regime.

» Matching pointwise and L!-rates of convergence of the
NPMLE in the weak-feature-impact scenario

1 5 1/3
()
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Summary — Limiting distributions

Phase transition corresponding to the elbow at §, ~

B

» Pointwise limiting distributions:

» Slow regime: Chernoff distribution

(but faster rate of convergence)
» Boundary case: New limit
» Fast regime: Limit for flat functions

» Limiting distribution of the stabilized L!-error:

» Slow regime: Normal distribution
(but slower rate of convergence)
» Fast regime: New limit
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Outlook

> [*°-error,
> Weak feature impact in higher dimension:

» Generalized additive model
P(Y = 1|X = x) J d
'°g<p(v:0|x:x))‘,.§_}ff(xf)’ X ) €

f; isotonic for all j,

» Semiparametric modeling of single index structure
P(Y =1X=x) = w<(ﬁ,x>)
1) isotonic,

» Bootstrapping at a phase transition.
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Thank you for your attention!
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