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How do we identify in a data-adaptive manner whether we are in Scenario A or B?
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Classical Approaches

e Concatenation: Merge features, train a joint model.
e Ensemble Methods: Train models separately, then combine predictions.

e Transfer/Domain Adaptation: Transfer knowledge from one “source” to
another “target” domain.
e Statistical Data Fusion: Methods to combine inferences from parallel studies,

e.g. Bayesian hierarchical models, meta-analysis, etc.

Challenges remain in understanding fundamental phase transitions in the problem

e.g., where does data fusion help vs hurt?
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o XK g Rrxp; x(k) = ZzU)(£(k)1/2 " Z(k) entries i.i.d. mean 0, variance 1; ()
bounded eigenvalues

e ny: Number of samples (typically ny > np); n1 + ny =: n.

o €K iid. mean 0, finite variance o2

Distribution Shift:

e Concept Shift: 8! #* 0.
e Covariate Shift: £(1) # >(2)
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Predict in target that has low sample size with better accuracy by using source samples
rather than using target only data.

Question: How do we leverage the source data in a principled way to improve
prediction accuracy?

This talk: Study in an overparametrized regime (p > ny + ny) through the lens of
minimum norm (min-norm) interpolation: one of the most commonly seen implicit

regularized limits in the ML literature



Quick Detour: Implicit
Regularization and Min-norm
Interpolation
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Implicit Regularization

With suitable initialization, step size, etc. modern ML algorithms show implicit
regularization to special prediction rules/classifiers

Examples abound:
— One of earliest example: AdaBoost (Zhang and Yu '05)

— GD (suitable initialization...) on overparametrized unregularized logistic loss (Soudry et

al. ’18)
— GD on linear convolutional neural networks (Gunasekar '18)

— GD training a self-attention layer, i.e. a stylized version of a transformer (Tarzanagh et

al '23; Vasudeva et al '24)
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— alg. properties at convergence
Theorem (An example result: Liang and S. AoS ’22)
In binary classification, with proper (non-vanishing) stepsize, Adaboost iterates o'
satisfy for all t > T(n, p, SNR)

Misclassification Error(@t) ~P(c;YZ1+ ;22 <0), as.

e Precise characterization of (Y, Z1, Z>) and (cf, ¢}, %)

e Approach: Characterize prediction error of the limiting min-f1-norm interpolator
and use connection with AdaBoost; Significantly improves upon classical bounds
by Schapire et al ‘98, Koltchinskii and Panchenko '05; similar characterization

possible for any algorithm converging to these interpolators 7
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Min-norm interpolators

For i.i.d. data (y;, x;) that can be perfectly interpolated, define the min-£4-norm

interpolator as

~

O, =argmin 0], st. yi=x/0,y;€R or yx;/0>0,y; €{l,-1}

e Important class—arises as implicit regularized limits of many algs

e Extensively studied under single distribution overparametrized models (Montanari et
al. '19, Deng et al. '19, Liang and S. '20, Bunea et al. '20, Chatterji et al. '20, Donhauser et al. '21,
Zhou et al. '21, '22)

e Under-explored in presence of distributions shifts; Mallinar et al. '24, Patil et al. '24
study out-of-distribution settings with no target data during training
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— Start from simplest: g = 2
— How do we think about the analogue for distribution shift settings?

— Reuvisit single training data results

Different formulations
e Min-5-norm interpolator: argmin||@|2 s.t. y; = x, 0 for all i

e Alternate (Hastie et al. '22): Ridgeless or A — 07 limit of solution to

N 1
65 = argmin |y — X0| + A0



Segue from regularized regression

e Regularized regression extensively studied for transfer learning (Yang et al. 20, Bastani
'21, Cai et al. '21 Li et al. '22, Zhang et al. '22, Tian and Feng '23, Zhou et al. '24, new synthetic
correlated data models proposed in Gerace et al. '22)
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Segue from regularized regression

e Regularized regression extensively studied for transfer learning (Yang et al. 20, Bastani
'21, Cai et al. '21 Li et al. '22, Zhang et al. '22, Tian and Feng '23, Zhou et al. '24, new synthetic
correlated data models proposed in Gerace et al. '22)

e Natural regularized loss: for suitable weights wy, wp > 0,

UML) g2 4 2102 _ x @2 2
argm@m{nHy X™Mo|5 + nHy X 9”2‘1‘/\”0“2}

e Ridgeless limit for any wy, ws is a pooled min-l>-norm interpolator:
9poo| = arg mgin 102 s.t. y,.(k) = xgk)TO for all i,k
This represents both early and intermediate fusion

(will mention other estimators briefly later)

10



e Characterize its out-of-sample prediction error, i.e.,
Risk = R(Bpool) = E[(xg Bpool — Xxq 82)2 X1 x(2)]

where xo ~ P, (2

e Guarantees will be w.h.p. over distribution of covariates

11
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Theorem (Song, Bhattacharya, S. '24+)
Assume 1) = () — | X(l), X?) Gaussian. With high probability over randomness

of X1, x )

2 n
R(Booat) = 50 + B0 + 2P =8 60) — 6|+ o)

For target-only interpolator, with high probability (Hastie et al 2022),

A o o P M2 a02)2
R(Btarget) = 0 1
(Buarger) = 2% + P2 103+ o(1)

Involved trade-offs between target SNR, degree of shift, p, ny, m
Trade-off even between first two coefficients

Universality results ongoing with Kenny Gu .



Concept Shift: Corollary

1H_g?
\|9 H , SSR (Shift-to-signal ratio) := o623

SNR (Signal-to-noise ratio) := ERIE
2
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Concept Shift: Corollary

2) 1) _p®
SNR (Signal-to-noise ratio) := \|9 H2 , SSR (Shift-to-signal ratio) = %
2
Theorem (Song, Bhattacharya, S. '24+)
Under model shift assumptions
1. IFSNR< — 2 then
(p—n)(p—n2) . .
R(etarget) i/ R(epoo/) + O(]-) (1)
2
2. Else, define p :== L2 :1 = (p—n1‘))(p—n2) . ﬁ. When SSR > p, then (1) holds; when
SSR < p, then

R(époo/) § R(étarge‘t) + 0(1)

Takeaways: (i) When the SNR of target is small, pooling always hurts, increases noise

(ii) If SNR is large transfer gain depends on the degree of shift
13
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SNR = [|6®)2/0?

n, = 100, p = 600, Shift-to-signal ratio (SSR)=
Takeaways: For low SNR, pooling does not help
For higher SNR it does till n; below a threshold

60 —01)|2/]|6@))> =
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Effects of SSR

10.0-

7.5-

2.5-

0.0-
0 250 500 750 1000

e np =100, p =600, SNR =5
e Transfer helps for low SSR but not higher SSR
e Key: Data-driven SNR, SSR estimators in paper

Useful to decide to pool or not to pool 15



Covariate shift: Setting
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Covariate shift: Setting

e Recall y(k) = XKek) 4 k). k =1 source, k =2 target

o XK = Z(k)(Z(k))1/2, Z(®) entries i.i.d. mean 0, variance 1

e Assume 0V = 92 (=) @) = y(A®) ARV T (Simultaneous
diagonalizability)

e Relevant distributions (also appear in Hastie et al '22):
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Risk under Covariate Shift

Theorem (Song, Bhattacharya, S. '24+)
Error variance: o2, dimension to total sample size ratio p/n = ~; n = ny + ny

" A (320D 4 53,02y .
_ 2 3 4 1 2
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02 . / %3 by dE- (D 2@ 1

e Precise description of constants &;, b; in paper
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Risk under Covariate Shift

Theorem (Song, Bhattacharya, S. '24+)
Error variance: o2, dimension to total sample size ratio p/n = ~; n = ny + ny

" A (320D 4 53,02y .
_ 2 3 4 1 2
R(Opoor) = = 7/ (GAD 1 50@ 1 1)2de(,\( ), @)

" bsA@ 4 (b + 1)AD
02 . / %3 by dE- (D 2@ 1

e Precise description of constants &;, b; in paper
e Depends only on A\()’s not vis

e More involved to study transfer versus target only performance

17



Example (Does covariate shift help?)

e Setup: Define M to be diagonal with reciprocal eigenvalues (p even),
1 1 .
Aﬁﬂil—i = 1/)\5 ) forAl =1,..,p/2
e Define R(M) := R(Bpoet| = = M, =) = 1)
e So R(I) denotes the no-covariate shift case
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Example (Does covariate shift help?)

e Setup: Define M to be diagonal with reciprocal eigenvalues (p even),
e 1/)\51) fori=1,..,p/2

e Define R(M) := R(Bpoet| = = M, =) = 1)

e So R(I) denotes the no-covariate shift case
Theorem (Song, Bhattacharya, S. "24+)

1. When ny < min{p/2,p — ny}, then

R(M) < R(1) + o(1)

2. When p/2 < ny < p — ny, then,
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Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. '24+)

o () has two eigenvalues (previous plot setting): )‘5314214 = 1/)\,(-1) =L for

i=1,..,p/2
e Let M(k) denote such a diagonal matrix
e ¥ =

(i) When ny < min{p/2,p — nzA} R(M(/ﬁl)) R(M(3)) + o(1) for any k3 > Ky > 1
(i) When p/2 < ny < p—np, R(M(r1)) > R(M(k2)) + o(1) for any k3 > kp > 1
(iii) 1f ny = min{p/2, p — m,}, then R(M(k)) does not depend on r > 1

— Takeaway: Under sufficient overparametrization, the more the covariate shift, the
less the risk and vice versa

19
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o AN =1/ =1Lfori=1,..p/2 and @ = |

e k=1 (red) gives risk curve for no covariate shift

e The crossing point on left is n; = p/2, p = 600, n, = 100; all curves cross red

curve monotonicity pattern between x's changes 20



Extensions

1. Other Estimators: Pre-training/fine-tuning type estimators (start with an initial
pooled estimator—biased, fine-tune using the target data), regularization based
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1. Other Estimators: Pre-training/fine-tuning type estimators (start with an initial
pooled estimator—biased, fine-tune using the target data), regularization based
estimators, late fusion estimators

2. Non-linear models: Random features regression (Gaussian equivalence trick: Hu
and Lu ('20), Liang and S. ('22)) or nonparametric models with basis expansions
(Equivalent Parametrization trick: Lahiry and S. ('24))

3. Beyond simultaneous diagonalizability: Feasible but requires novel
developments in random matrix theory (will discuss later)
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e We provide the first precise, analytic formulas for the generalization error of
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Key Takeaways

e Heterogeneity: opportunity and risk.
e Distribution shift in the interpolating regime can be rigorously analyzed.

e We provide the first precise, analytic formulas for the generalization error of
pooled min-norm interpolator under concept and covariate shift.

e Our results reveal sharp phase transitions thresholds for positive vs. negative
transfer, quantifying when to share, when to “keep separate.”

e Results form a starting point—many extensions possible.

e We significantly advance Random Matrix Theory for this work.

22



Technical detour: Our Contribution
to Random Matrix Theory




Review: Basic Setup

o Let Z € R"*P be a matrix with i.i.d. entries satisfying E[Z;] = 0, Var(Z;) =1,
and necessary moment conditions

e For some ¥ € RPXP define X = Z¥ 1/2
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Review: Basic Setup

o Let Z € R"*P be a matrix with i.i.d. entries satisfying E[Z;] = 0, Var(Z;) =1,
and necessary moment conditions

e For some X € RP*P, define X = Zx1/2
e Suppose that p/n — v € (0,00)

e Consider the scaled sample covariance matrix X = %XTX

Wish to understand the behavior of the empirical spectral distribution (ESD) of X:

1
Hg = p Z 5A,-(f:)
i<p
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A global law

n=5000, p=1000

—— MP density with y=0.2

Assume that & = I. Recall that ug converges 0
weakly to the Marchenko-Pastur law fi,.

0.0

025 050 075 1.00 125 150 175 2.00 225

In particular, the Stieltjes transform of ;¢ converges to the Stieltjes transform of ji.:
1 - 1 1 dyp-(t
ST(E-z)7 =2) / dun(t) _ m.(z)
P P,.<p)\,-():)—z t—z

Stieltjes transform of ESD

But, true in quite some generality. 24



Application: high-dimensional ridge(less) regression

Hastie et al. (2020)

e Suppose y = X3 + € for fixed 8 and i.i.d. noise €.

e Consider the ridge estimator

. _ 1,& -
By = argmin{ly — Xbl[3 + nX[b[3} = = (X + A1)~ XTy
beRP n
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e Suppose y = X3 + € for fixed 8 and i.i.d. noise €.

e Consider the ridge estimator
~ : 1 & .
B = argmin{|ly — Xb||3 + nA[[b|3} = ~(X + A1)~ XTy
beRP n
e The bias and variance expressions (conditional on X) are

Bx(Bx. 8) == |E[By — B | X]|3 = 28T (X + A)TE(E + A)7!3

V(). B) = 2L

Tr [ZZ(Z + D72

which we can study using variants of these global laws
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Application: high-dimensional ridge(less) regression

Hastie et al. (2020)

e Suppose y = X3 + € for fixed 8 and i.i.d. noise €.

e Consider the ridge estimator
2 il a
B, = argmin{|ly — Xbl[3 + nA[b[3} = =(X + A)"'XTy
beRP n
e The bias and variance expressions (conditional on X) are
Bx(Bx.8) == [E[Bx — B X]E = N8 (X + A)'E(X +A) '8
Var(e 2
V(8. 8) 1= Vi (s 4 )7

which we can study using variants of these global laws
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Applying the global law

Continue to assume X = | (the anisotropic global laws are similar).

Then, to analyze Vx(3,,8), it suffices to understand

lim fTr[Z(Z+)\I) ] = Jim (;Tr[(i+)\l)_1]—)\Tr[(}A:—I—)\I)_2]>

p—o0 p

= lim Gﬂ[(i+A|) - 0 [ Trl(Z+ A1)~ 1]D

p—00

—my(=A) Claim: Hod)\ (=)
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Applying the global law

Continue to assume X = | (the anisotropic global laws are similar).

Then, to analyze VX(B,\,B), it suffices to understand

lim fTr[Z(Z+)\I) 2= lim (;Tr[(i+)\l)_1]—)\Tr[(}A:—I—)\I)_2]>

p—oo p p—o0

= lim Gﬂ[(i+A|) - 0 [ Trl(Z+ A1)~ 1]D

p—00

—my(=A) Claim: Had)\ (=)

A= (f + A)~! is analytic and uniformly bounded for A\ bounded away from 0

Uniform convergence in a compact set around A, which allows us to exchange limp_ o and 0—6)\

26



Ridgeless regression

e In the overparameterized regime (p > n), for the min-norm interpolator

~

B = argmin{||bj|> : Xb =y}
beRp
= (X"X)IXxTy
(XTX +nAl)~IXTy

lim
A—071
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Var(e1)
n

Bx(B:8) =BT (I - £z - £'%)8, w(B:8) = & 5]

where £ = limy o+ (£ + Al

27



Ridgeless regression

e In the overparameterized regime (p > n), for the min-norm interpolator

~

B = argmin{||bj|> : Xb =y}
beRp
= (X"X)IXxTy
(XTX +nAl)~IXTy

= lim
A—0F
e The bias and variance expressions (conditional on X) are

Var(e1)
n

Bx(B:8) =BT (I - £z - £'%)8, w(B:8) = & 5]

where £ = limy o+ (£ + Al

e Previous argument fails since we lose uniform boundedness; need new tools!

27



Local laws

Global laws establish control of the spectrum of ¥ on an average sense.

e To probe eigenvalue behavior on a finer scale, we need a quantitative result that
allows for |z| — 0 as n — oo.
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e To probe eigenvalue behavior on a finer scale, we need a quantitative result that
allows for |z| — 0 as n — oo.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small e, if z = E + in satisfies n=17¢ < and |z| > ¢, then

> — z1)'w) — my(2)(v,w 7Imm7(z) L
. (E = 2) 7w = mo(2) v w)l < [0

for deterministic vectors v,w € CP of fixed norm.
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Local laws

Global laws establish control of the spectrum of ¥ on an average sense.

e To probe eigenvalue behavior on a finer scale, we need a quantitative result that
allows for |z| — 0 as n — oo.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small e, if z = E + in satisfies n=17¢ < and |z| > ¢, then

| 1
m m,(z) .

> — z1) " tw) — m.(2) (v, w
. (E = 2) 7w = mo(2) v w)l < [0

for deterministic vectors v,w € CP of fixed norm.

N

Morally, says (X — zI)~1 & m,(z)l in a much stronger sense than a global law.

Initiated in Erdds et al. (2009), this line of work called results of this form local laws
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Application: high-dimensional ridgeless regression, revisited

Recall that for fixed A, the risk calculation required

pI|_>n;OfTr[Z(Z+)\I) 2] = Jim C)Tr[(fnm—l]—x a‘i[ Tr[(X + A1)~ 1]D

—my(=A) Claim: —>8>\ (=)
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Recall that for fixed A, the risk calculation required

lim fTr[Z(Z%—)\I) 2] = Jim C)Tr[(f:+A|) X 8[ Tr[()“:+A|)—1]D

p—o0 p

—my(=A) Claim: —>8>\ (=)

By simplifying the bound in the anisotropic local law, one can show that

1w 1
- _ < -
‘pTr[(Z + )7 — my( )\)‘ S Re() - nA-I72
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Application: high-dimensional ridgeless regression, revisited

Recall that for fixed A, the risk calculation required

lim fTr[Z(Z%—)\I) 2] = Jim C)Tr[(f:+A|) X 8[ Tr[()“:+A|)—1]D

p—o0 p

—my(=A) Claim: —>8>\ (=)

By simplifying the bound in the anisotropic local law, one can show that

1w 1
- _ < -
‘pTr[(Z + )7 — my( )\)‘ S Re() - nA-I72

and further

0 1 1
— <
8)\ |: -I_r[(Z + )\I) ] m’V( A):| ‘ ~ Re(A)2 A n(l_E)/2
These assumed X = | but anisotropic versions exist (Knowles and Yin '16).
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Distribution shift problems

e In the covariate shift setting, the covariance matrix is now

N

3 = x(WTx@) 4 x@Tx()

with X(l),X(Q) differing in distribution.
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Distribution shift problems

e In the covariate shift setting, the covariance matrix is now

N

3 = x(WTx@) 4 x@Tx()

with X(l),X(Z) differing in distribution. Free probability theory provides global law
(Voiculescu ('91), Speicher ('93); Book length treatments: Nica and Speicher ('06), Bai and Silverstein
('10), Mingo and Speicher ('17), Erd8s and Yau ('17), Potters and Bouchaud ('20))

e We establish a new anisotropic local law for the resolvent of such sums.
e Allows to characterize risk of the interpolator by tracking A-dependent quantities.

e Recent: A double application of our local law allows to relax assumptions such as
simultaneous diagonalizability! (joint with Kenny Gu)
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Widespread Utility Across Modern
ML Problems




o Knowledge Distillation and Weak-to-strong Generalization: Teacher-student
scenario, two kinds of model training, rich to small or small to rich. Similar sum
of sample covariances of different distributions arise (initial work: Iidiz et al. 2024,

interesting statistical questions outstanding: ongoing with Radu Lecoui and Debarghya Mukherjee)
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e Knowledge Distillation and Weak-to-strong Generalization: Teacher-student

scenario, two kinds of model training, rich to small or small to rich. Similar sum
of sample covariances of different distributions arise (initial work: Iidiz et al. 2024,
interesting statistical questions outstanding: ongoing with Radu Lecoui and Debarghya Mukherjee)

e Multi-objective optimization for economics problems e.g., to understand
incumbent/entrant market dynamics for Al companies (Jagadeesan et al. '24)

e Boosting generalization performance by mixing real data with synthetic data
generated from Al models (extensively studied experimentally or in low dimensions: Dohmatob et
al. '24, Gerstgrasser et al. '24, Dey and Donoho '24, He et al. ’25)

Q. When and how can model collapse be prevented under overparametrization?

(Ongoing with Anvit Garg and Sohom Bhattacharya)

All of these problems provide rich test beds for our RMT advances
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Synthetic data and model collapse

Learning Resample X.v5 Learning lterate
X.y) I Algorithm I ( ’yA) M Algorithm v
K
\ y ~ |ple
Pyix

32



S etic data and model collapse

Learning
X.y) Algorithm
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v

e Common learning paradigm in modern ML (Anaby-Tavor et al. '19, Huang et al. '22),

improves performance often

32



S etic data and model collapse

X Learning Resample X.v5 Learning lterate
X.y) I Algorithm I ( ’yA) M Algorithm v
K
\ y ~ |ple
Pyix

e Common learning paradigm in modern ML (Anaby-Tavor et al. '19, Huang et al. '22),
improves performance often

e But, naive synthetic data-based retraining degrades performance (model collapse,
Shumailov et al. '23, Hataya et al. ’22)
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S tic data and model collapse

Learning
X.y) Algorithm

|

Pyix

Resample

y

X.y%)

s

A

~P

y

X

—
M

Learning
Algorithm

Iterate

v

e Common learning paradigm in modern ML (Anaby-Tavor et al. '19, Huang et al. '22),

improves performance often

e But, naive synthetic data-based retraining degrades performance (model collapse,

Shumailov et al. '23, Hataya et al. ’22)

e To prevent collapse: Mix original real data with synthetic data in Step IlI

(Dohmatob et al. '24, Gerstgrasser et al. '24)
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Mitigating model collapse under overparametrization

X, Learning Resample X vy Learning lterate
X.5) Algorithm X,y Algorithm
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e [n what fraction should you mix the real and synthetic data to see optimal gains
in prediction performance?
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e In what fraction should you mix the real and synthetic data to see optimal gains
in prediction performance?

e We can quantify this precisely by building upon our RMT advances
E.g., If learning algorithm is min-¢>-norm interpolator, the optimal real data
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Mitigating model collapse under overparametrization

X, Learning Resample X vy Learning lterate
X.5) Algorithm X,y Algorithm
' o ysop N W
Yo~ Fyx
PyIX

e In what fraction should you mix the real and synthetic data to see optimal gains
in prediction performance?
e We can quantify this precisely by building upon our RMT advances
E.g., If learning algorithm is min-¢>-norm interpolator, the optimal real data
fraction is reciprocal of the Golden Ratio (Garg, Bhattacharya and S. '25+)
e Previously, rigorous understanding on how to mitigate model collapse existed only
under low dimensions (Dey and Donoho '24, He et al. '25)
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