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Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

• Other applications: Social Media– Text + Images + Networks, Sensor Fusion–

Radar + Cameras in autonomous driving, ...
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What Makes Distribution Shift Challenging?

• Data come from sources with different noise, bias, and covariate structures.

• Distributional heterogeneity, e.g., covariate or label shift or mismatched features

• Theoretical understanding under-developed compared to “single distribution”

statistics/machine learning.

Distribution A

Distribution B

Scenario A: Integration useless

Distribution A

Distribution B

Scenario B: Integration useful

How do we identify in a data-adaptive manner whether we are in Scenario A or B?
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Classical Approaches

• Concatenation: Merge features, train a joint model.

• Ensemble Methods: Train models separately, then combine predictions.

• Transfer/Domain Adaptation: Transfer knowledge from one “source” to

another “target” domain.

• Statistical Data Fusion: Methods to combine inferences from parallel studies,

e.g. Bayesian hierarchical models, meta-analysis, etc.

Challenges remain in understanding fundamental phase transitions in the problem

e.g., where does data fusion help vs hurt?
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Our interest: Multi-source data integration

M datasets, from possibly different distributions. Samples i.i.d. in each.

For simplicity, assume linear models and M = 2. So we observe (y(k),X(k)) with

y(k) = X(k)θ(k) + ϵ(k), k = 1, 2

• X(k) ∈ Rnk×p: X (k) = Z (k)(Σ(k))1/2, Z (k) entries i.i.d. mean 0, variance 1; Σ(k)

bounded eigenvalues

• nk : Number of samples (typically n1 ≫ n2); n1 + n2 =: n.

• ϵ(k) i.i.d. mean 0, finite variance σ2

Distribution Shift:

• Concept Shift: θ(1) ̸= θ(2).

• Covariate Shift: Σ(1) ̸= Σ(2)
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Goal

Predict in target that has low sample size with better accuracy by using source samples

rather than using target only data.

Question: How do we leverage the source data in a principled way to improve

prediction accuracy?

This talk: Study in an overparametrized regime (p > n1 + n2) through the lens of

minimum norm (min-norm) interpolation: one of the most commonly seen implicit

regularized limits in the ML literature
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Quick Detour: Implicit

Regularization and Min-norm

Interpolation



Implicit Regularization

With suitable initialization, step size, etc. modern ML algorithms show implicit

regularization to special prediction rules/classifiers

Examples abound:

– One of earliest example: AdaBoost (Zhang and Yu ’05)

– GD (suitable initialization...) on overparametrized unregularized logistic loss (Soudry et

al. ’18)

– GD on linear convolutional neural networks (Gunasekar ’18)

– GD training a self-attention layer, i.e. a stylized version of a transformer (Tarzanagh et

al ’23; Vasudeva et al ’24)
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Utility?

• Often yields new insights on algorithms

• Common recipe: Study the implicit regularized limit

→ alg. properties at convergence

Theorem (An example result: Liang and S. AoS ’22)

In binary classification, with proper (non-vanishing) stepsize, Adaboost iterates θ̂
t

satisfy for all t ≥ T (n, p,SNR)

Misclassification Error(θ̂
t
) ≈ P (c⋆1YZ1 + c⋆2Z2 < 0) , a.s.

• Precise characterization of (Y ,Z1,Z2) and (c⋆1 , c
⋆
2 , s

⋆)

• Approach: Characterize prediction error of the limiting min-ℓ1-norm interpolator

and use connection with AdaBoost; Significantly improves upon classical bounds

by Schapire et al ’98, Koltchinskii and Panchenko ’05; similar characterization

possible for any algorithm converging to these interpolators
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Min-norm interpolators

For i.i.d. data (yi , x i ) that can be perfectly interpolated, define the min-ℓq-norm

interpolator as

θ̂q = argmin ∥θ∥q s.t. yi = x⊤
i θ, yi ∈ R or yix⊤

i θ ≥ 0, yi ∈ {1,−1}

• Important class–arises as implicit regularized limits of many algs

• Extensively studied under single distribution overparametrized models (Montanari et

al. ’19, Deng et al. ’19, Liang and S. ’20, Bunea et al. ’20, Chatterji et al. ’20, Donhauser et al. ’21,

Zhou et al. ’21, ’22)

• Under-explored in presence of distributions shifts; Mallinar et al. ’24, Patil et al. ’24

study out-of-distribution settings with no target data during training
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Natural analogue of min-norm interpolators under distribution shifts?

– Start from simplest: q = 2

– How do we think about the analogue for distribution shift settings?

– Revisit single training data results

Different formulations

• Min-ℓ2-norm interpolator: argmin ∥θ∥2 s.t. yi = x⊤
i θ for all i

• Alternate (Hastie et al. ’22): Ridgeless or λ → 0+ limit of solution to

θ̂λ = argmin
θ

1

2n
∥y − Xθ∥2 + λ∥θ∥2

9
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Segue from regularized regression

• Regularized regression extensively studied for transfer learning (Yang et al. ’20, Bastani

’21, Cai et al. ’21 Li et al. ’22, Zhang et al. ’22, Tian and Feng ’23, Zhou et al. ’24, new synthetic

correlated data models proposed in Gerace et al. ’22)

• Natural regularized loss: for suitable weights w1,w2 ≥ 0,

argmin
θ

{w1

n
∥y (1) − X (1)θ∥22 +

w2

n
∥y (2) − X (2)θ∥22 + λ∥θ∥22

}
• Ridgeless limit for any w1,w2 is a pooled min-ℓ2-norm interpolator:

θ̂pool = argmin
θ

∥θ∥2 s.t. y
(k)
i = x (k)

i
⊤θ for all i,k

This represents both early and intermediate fusion

(will mention other estimators briefly later)
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Goal

• Characterize its out-of-sample prediction error, i.e.,

Risk = R(θ̂pool) = E[(x⊤
0 θ̂pool − x⊤

0 θ
(2))2|X (1),X (2)]

where x0 ∼ Px (2)

• Guarantees will be w.h.p. over distribution of covariates

11



Main Results



Risk under Concept Shift

Theorem (Song, Bhattacharya, S. ’24+)
Assume Σ(1) = Σ(2) = I ,X (1),X (2) Gaussian. With high probability over randomness

of X (1),X (2)

R(θ̂pool) =
n

p − n
σ2 +

p − n

p
||θ(2)||22 +

n1(p − n1)

p(p − n)
||θ(1) − θ(2)||22 + o(1)

• For target-only interpolator, with high probability (Hastie et al 2022),

R(θ̂target) =
n2

p − n2
σ2 +

p − n2
p

||θ(2)||22 + o(1)

• Involved trade-offs between target SNR, degree of shift, p, n1, n2

• Trade-off even between first two coefficients

• Universality results ongoing with Kenny Gu
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Concept Shift: Corollary

SNR (Signal-to-noise ratio) :=
||θ(2)||22

σ2 , SSR (Shift-to-signal ratio) :=
||θ(1)−θ(2)||22

||θ(2)||22

Theorem (Song, Bhattacharya, S. ’24+)
Under model shift assumptions

1. If SNR ≤ p2

(p−n)(p−n2)
, then

R(θ̂target) ≤ R(θ̂pool) + o(1) (1)

2. Else, define ρ := p−n
p−n1

− p2

(p−n1)(p−n2)
· 1
SNR . When SSR ≥ ρ, then (1) holds; when

SSR < ρ, then

R(θ̂pool) ≤ R(θ̂target) + o(1)

Takeaways: (i) When the SNR of target is small, pooling always hurts, increases noise
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Effects of SNR
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• SNR = ∥θ(2)∥2/σ2

• n2 = 100, p = 600, Shift-to-signal ratio (SSR)= ∥θ(1) − θ(2)∥2/∥θ(2)∥2 = 0.2

• Takeaways: For low SNR, pooling does not help

• For higher SNR it does till n1 below a threshold
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Effects of SSR
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• Transfer helps for low SSR but not higher SSR

• Key: Data-driven SNR, SSR estimators in paper

Useful to decide to pool or not to pool
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Covariate shift: Setting

• Recall y (k) = X (k)θ(k) + ε(k); k = 1 source, k = 2 target

• X (k) = Z (k)(Σ(k))1/2, Z (k) entries i.i.d. mean 0, variance 1

• Assume θ(1) = θ(2), (Σ(1),Σ(2)) = V (Λ(1),Λ(2))V⊤ (Simultaneous

diagonalizability)

• Relevant distributions (also appear in Hastie et al ’22):

(i)Ĥp(a, b) :=
1

p

p∑
i=1

1{(a,b)=(λ
(1)
i ,λ

(2)
i )},

l

(ii)Ĝp(a, b) :=
1

||θ(2)||22

p∑
i=1

⟨θ(2), v i ⟩21{(a,b)=(λ
(1)
i ,λ

(2)
i )}
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Risk under Covariate Shift

Theorem (Song, Bhattacharya, S. ’24+)
Error variance: σ2, dimension to total sample size ratio p/n = γ; n = n1 + n2

R(θ̂pool) =− σ2γ

∫
λ(2)(ã3λ

(1) + ã4λ
(2))

(ã1λ(1) + ã2λ(2) + 1)2
dĤp(λ

(1), λ(2))

+ ||θ(2)||22 ·
∫

b̃3λ
(1) + (b̃4 + 1)λ(2)

(b̃1λ(1) + b̃2λ(2) + 1)2
dĜp(λ

(1), λ(2)) + o(1)

• Precise description of constants ãi , b̃i in paper

• Depends only on λ(i)’s not v ′
i s

• More involved to study transfer versus target only performance
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Example (Does covariate shift help?)

• Setup: Define M to be diagonal with reciprocal eigenvalues (p even),

λ
(1)
p+1−i = 1/λ

(1)
i for i = 1, ..., p/2

• Define R̂(M) := R(θ̂pool|Σ(1) = M ,Σ(2) = I )
• So R̂(I ) denotes the no-covariate shift case

Theorem (Song, Bhattacharya, S. ’24+)

1. When n1 < min{p/2, p − n2}, then

R̂(M) < R̂(I ) + o(1)

2. When p/2 ≤ n1 < p − n2, then,

R̂(M) ≥ R̂(I ) + o(1)

– Takeaway: Under sufficient overparametrization, covariate shift helps

18
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Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. ’24+)

• Σ(1) has two eigenvalues (previous plot setting): λ
(1)
p+1−i = 1/λ

(1)
i = 1

κ for

i = 1, ..., p/2

• Let M(κ) denote such a diagonal matrix

• Σ(2) = I

(i) When n1 < min{p/2, p − n2}, R̂(M(κ1)) ≤ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(ii) When p/2 < n1 < p − n2, R̂(M(κ1)) ≥ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(iii) If n1 = min{p/2, p − n2}, then R̂(M(κ)) does not depend on κ ≥ 1

– Takeaway: Under sufficient overparametrization, the more the covariate shift, the

less the risk and vice versa

19



Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. ’24+)

• Σ(1) has two eigenvalues (previous plot setting): λ
(1)
p+1−i = 1/λ

(1)
i = 1

κ for

i = 1, ..., p/2

• Let M(κ) denote such a diagonal matrix

• Σ(2) = I

(i) When n1 < min{p/2, p − n2}, R̂(M(κ1)) ≤ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(ii) When p/2 < n1 < p − n2, R̂(M(κ1)) ≥ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(iii) If n1 = min{p/2, p − n2}, then R̂(M(κ)) does not depend on κ ≥ 1

– Takeaway: Under sufficient overparametrization, the more the covariate shift, the

less the risk and vice versa

19



Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. ’24+)

• Σ(1) has two eigenvalues (previous plot setting): λ
(1)
p+1−i = 1/λ

(1)
i = 1

κ for

i = 1, ..., p/2

• Let M(κ) denote such a diagonal matrix

• Σ(2) = I

(i) When n1 < min{p/2, p − n2}, R̂(M(κ1)) ≤ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(ii) When p/2 < n1 < p − n2, R̂(M(κ1)) ≥ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(iii) If n1 = min{p/2, p − n2}, then R̂(M(κ)) does not depend on κ ≥ 1

– Takeaway: Under sufficient overparametrization, the more the covariate shift, the

less the risk and vice versa

19



Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. ’24+)

• Σ(1) has two eigenvalues (previous plot setting): λ
(1)
p+1−i = 1/λ

(1)
i = 1

κ for

i = 1, ..., p/2

• Let M(κ) denote such a diagonal matrix

• Σ(2) = I

(i) When n1 < min{p/2, p − n2}, R̂(M(κ1)) ≤ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(ii) When p/2 < n1 < p − n2, R̂(M(κ1)) ≥ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(iii) If n1 = min{p/2, p − n2}, then R̂(M(κ)) does not depend on κ ≥ 1

– Takeaway: Under sufficient overparametrization, the more the covariate shift, the

less the risk and vice versa

19



Illustration
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• λ
(1)
p+1−i = 1/λ

(1)
i = 1

κ for i = 1, ..., p/2, and Σ(2) = I

• κ = 1 (red) gives risk curve for no covariate shift

• The crossing point on left is n1 = p/2, p = 600, n2 = 100; all curves cross red

curve

monotonicity pattern between κ’s changes
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Extensions

1. Other Estimators: Pre-training/fine-tuning type estimators (start with an initial

pooled estimator–biased, fine-tune using the target data), regularization based

estimators, late fusion estimators

2. Non-linear models: Random features regression (Gaussian equivalence trick: Hu

and Lu (’20), Liang and S. (’22)) or nonparametric models with basis expansions

(Equivalent Parametrization trick: Lahiry and S. (’24))

3. Beyond simultaneous diagonalizability: Feasible but requires novel

developments in random matrix theory (will discuss later)
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Key Takeaways

• Heterogeneity: opportunity and risk.

• Distribution shift in the interpolating regime can be rigorously analyzed.

• We provide the first precise, analytic formulas for the generalization error of

pooled min-norm interpolator under concept and covariate shift.

• Our results reveal sharp phase transitions thresholds for positive vs. negative

transfer, quantifying when to share, when to “keep separate.”

• Results form a starting point—many extensions possible.

• We significantly advance Random Matrix Theory for this work.
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Technical detour: Our Contribution

to Random Matrix Theory



Review: Basic Setup

• Let Z ∈ Rn×p be a matrix with i.i.d. entries satisfying E[Zij ] = 0, Var(Zij) = 1,

and necessary moment conditions

• For some Σ ∈ Rp×p, define X = ZΣ1/2

• Suppose that p/n → γ ∈ (0,∞)

• Consider the scaled sample covariance matrix Σ̂ = 1
nX

⊤X

Wish to understand the behavior of the empirical spectral distribution (ESD) of Σ̂:

µΣ̂ =
1

p

∑
i≤p

δλi (Σ̂)
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A global law

Assume that Σ = I. Recall that µΣ̂ converges

weakly to the Marchenko-Pastur law µγ .

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
0.0

0.2

0.4

0.6

0.8

n = 5000, p = 1000
MP density with = 0.2

In particular, the Stieltjes transform of µΣ̂ converges to the Stieltjes transform of µγ :

1

p
Tr[(Σ̂− zI)−1]︸ ︷︷ ︸

Stieltjes transform of ESD

=
1

p

∑
i≤p

1

λi (Σ̂)− z
→

∫
dµγ(t)

t − z
= mγ(z)

But, true in quite some generality. 24



Application: high-dimensional ridge(less) regression

Hastie et al. (2020)

• Suppose y = Xβ + ϵ for fixed β and i.i.d. noise ϵ.

• Consider the ridge estimator

β̂λ = argmin
b∈Rp

{∥y− Xb∥22 + nλ∥b∥22} =
1

n
(Σ̂+ λI)−1X⊤y

• The bias and variance expressions (conditional on X) are

BX(β̂λ,β) := ∥E[β̂λ − β | X]∥2Σ = λ2β⊤(Σ̂+ λI)−1Σ(Σ̂+ λI)−1β

VX(β̂λ,β) :=
Var(ϵ1)

n
Tr[ΣΣ̂(Σ̂+ λI)−2]

which we can study using variants of these global laws
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Applying the global law

Continue to assume Σ = I (the anisotropic global laws are similar).

Then, to analyze VX(β̂λ,β), it suffices to understand

lim
p→∞

1

p
Tr[Σ̂(Σ̂+ λI)−2] = lim

p→∞

(
1

p
Tr[(Σ̂+ λI)−1]− λ

p
Tr[(Σ̂+ λI)−2]

)
= lim

p→∞

(
1

p
Tr[(Σ̂+ λI)−1]︸ ︷︷ ︸

→mγ(−λ)

−λ · ∂

∂λ

[
1

p
Tr[(Σ̂+ λI)−1]

]
︸ ︷︷ ︸

Claim: → ∂
∂λ

mγ(−λ)

)

λ 7→ (Σ̂+ λI)−1 is analytic and uniformly bounded for λ bounded away from 0

Uniform convergence in a compact set around λ, which allows us to exchange limp→∞ and ∂
∂λ

.
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Ridgeless regression

• In the overparameterized regime (p > n), for the min-norm interpolator

β̂ = argmin
b∈Rp

{∥b∥2 : Xb = y}

= (X⊤X)†X⊤y

= lim
λ→0+

(X⊤X+ nλI)−1X⊤y

• The bias and variance expressions (conditional on X) are

BX(β̂;β) = β⊤(I − Σ̂
†
Σ̂)Σ(I − Σ̂

†
Σ̂)β, VX(β̂;β) =

Var(ϵ1)

n
Tr[Σ̂

†
Σ]

where Σ̂
†
= limλ→0+(Σ̂+ λI)−1

• Previous argument fails since we lose uniform boundedness; need new tools!
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Local laws

Global laws establish control of the spectrum of Σ̂ on an average sense.

• To probe eigenvalue behavior on a finer scale, we need a quantitative result that

allows for |z | → 0 as n → ∞.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small ϵ, if z = E + iη satisfies n−1+ϵ ≤ η and |z | ≥ ϵ, then

|⟨v, (Σ̂− zI)−1w⟩ −mγ(z)⟨v,w⟩| ≺

√
Immγ(z)

nη
+

1

nη

for deterministic vectors v,w ∈ Cp of fixed norm.

Morally, says (Σ̂− zI)−1 ≈ mγ(z)I in a much stronger sense than a global law.

Initiated in Erdős et al. (2009), this line of work called results of this form local laws
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Application: high-dimensional ridgeless regression, revisited

Recall that for fixed λ, the risk calculation required

lim
p→∞

1

p
Tr[Σ̂(Σ̂+ λI)−2] = lim

p→∞

(
1

p
Tr[(Σ̂+ λI)−1]︸ ︷︷ ︸

→mγ(−λ)

−λ · ∂

∂λ

[
1

p
Tr[(Σ̂+ λI)−1]

]
︸ ︷︷ ︸

Claim: → ∂
∂λ

mγ(−λ)

)

By simplifying the bound in the anisotropic local law, one can show that∣∣∣∣1pTr[(Σ̂+ λI)−1]−mγ(−λ)

∣∣∣∣ ≲ 1

Re(λ) · n(1−ϵ)/2

and further ∣∣∣∣ ∂∂λ
[
1

p
Tr[(Σ̂+ λI)−1]−mγ(−λ)

]∣∣∣∣ ≲ 1

Re(λ)2 · n(1−ϵ)/2

These assumed Σ = I but anisotropic versions exist (Knowles and Yin ’16).
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Distribution shift problems

• In the covariate shift setting, the covariance matrix is now

Σ̂ = X(1)⊤X(1) + X(2)⊤X(2)

with X(1),X(2) differing in distribution.

Free probability theory provides global law

(Voiculescu (’91), Speicher (’93); Book length treatments: Nica and Speicher (’06), Bai and Silverstein

(’10), Mingo and Speicher (’17), Erdős and Yau (’17), Potters and Bouchaud (’20))

• We establish a new anisotropic local law for the resolvent of such sums.

• Allows to characterize risk of the interpolator by tracking λ-dependent quantities.

• Recent: A double application of our local law allows to relax assumptions such as

simultaneous diagonalizability! (joint with Kenny Gu)
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Widespread Utility Across Modern

ML Problems



Examples

• Knowledge Distillation and Weak-to-strong Generalization: Teacher-student

scenario, two kinds of model training, rich to small or small to rich. Similar sum

of sample covariances of different distributions arise (initial work: Ildiz et al. 2024,

interesting statistical questions outstanding: ongoing with Radu Lecoui and Debarghya Mukherjee)

• Multi-objective optimization for economics problems e.g., to understand

incumbent/entrant market dynamics for AI companies (Jagadeesan et al. ’24)

• Boosting generalization performance by mixing real data with synthetic data

generated from AI models (extensively studied experimentally or in low dimensions: Dohmatob et

al. ’24, Gerstgrasser et al. ’24, Dey and Donoho ’24, He et al. ’25)

Q. When and how can model collapse be prevented under overparametrization?

(Ongoing with Anvit Garg and Sohom Bhattacharya)

All of these problems provide rich test beds for our RMT advances
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Synthetic data and model collapse

• Common learning paradigm in modern ML (Anaby-Tavor et al. ’19, Huang et al. ’22),

improves performance often

• But, naive synthetic data-based retraining degrades performance (model collapse,

Shumailov et al. ’23, Hataya et al. ’22)

• To prevent collapse: Mix original real data with synthetic data in Step III

(Dohmatob et al. ’24, Gerstgrasser et al. ’24)
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Mitigating model collapse under overparametrization

• In what fraction should you mix the real and synthetic data to see optimal gains

in prediction performance?

• We can quantify this precisely by building upon our RMT advances

E.g., If learning algorithm is min-ℓ2-norm interpolator, the optimal real data

fraction is reciprocal of the Golden Ratio (Garg, Bhattacharya and S. ’25+)

• Previously, rigorous understanding on how to mitigate model collapse existed only

under low dimensions (Dey and Donoho ’24, He et al. ’25)
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