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Self-normalized sums are often considered to be ”more robust” as regards the influence of large
obervations. They are very much present in log-return data of stock prices and indices, foreign
exchange rates, interest rates, etc.

In this context a stunning result was proved by Logan et al. (1973). Assuming an iid centered
sequence (Xt) with a regularly varying tail, i.e., P(±Xt > x) ∼ p± x−α as x → ∞, the studentized
sum Sn = X1+· · ·+Xn has asymptotically a Gaussian tail even if α ∈ (1, 2), i.e., when var(X1) = ∞.
This result is in agreement with the fact that Sn and the sample standard deviation are of the same
asymptotic order. Moreover, if α ∈ (1, 2), (Sn/an) converges in distribution to an α-stable law with
a (commonly unknown) normalizing sequence (an). Self-normalization avoids knowledge of (an).
Similar results remain valid for Sn under self-normalization with the maximum of |X1|, . . . , |Xn|.

If (Xt) is (strictly) stationary and regularly varying (in a sense to be defined) with index α ∈ (0, 2)
similar asymptotic theory is valid for self-normalized sums. These include financial time series model
such as stochastic volatility models, GARCH processes, autoregressive conditional durations models.
A particularly nice case is a regularly varying linear process with infinite variance: limit results for
the self-normalized sample mean are the same as in the iid case modulo some scaling constants; see
Davis and Resnick (1985). Unfortunately, this is (almost) the only nice case. In presence of extremal
clusters in the sequence limit theory for self-normalized sums becomes complicated and depends on
the model at hand. In particular, the limit laws may lack moments, in contrast to the iid case,
and graphical tools based on self-normalized quantities may fool one; see Matsui et al. (2024) and
Mikosch and Wintenberger (2024).
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